Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 4, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979940

RESUMO

BACKGROUND: Cynanchum wilfordii (Cw) and Cynanchum auriculatum (Ca) have long been used in traditional medicine and as functional food in Korea and China, respectively. They have diverse medicinal functions, and many studies have been conducted, including pharmaceutical efficiency and metabolites. Especially, Cw is regarded as the most famous medicinal herb in Korea due to its menopausal symptoms relieving effect. Despite the high demand for Cw in the market, both species are cultivated using wild resources with rare genomic information. RESULTS: We collected 160 Cw germplasm from local areas of Korea and analyzed their morphological diversity. Five Cw and one Ca of them, which were morphologically diverse, were sequenced, and nuclear ribosomal DNA (nrDNA) and complete plastid genome (plastome) sequences were assembled and annotated. We investigated the genomic characteristics of Cw as well as the genetic diversity of plastomes and nrDNA of Cw and Ca. The Cw haploid nuclear genome was approximately 178 Mbp. Karyotyping revealed the juxtaposition of 45S and 5S nrDNA on one of 11 chromosomes. Plastome sequences revealed 1226 interspecies polymorphisms and 11 Cw intraspecies polymorphisms. The 160 Cw accessions were grouped into 21 haplotypes based on seven plastome markers and into 108 haplotypes based on seven nuclear markers. Nuclear genotypes did not coincide with plastome haplotypes that reflect the frequent natural outcrossing events. CONCLUSIONS: Cw germplasm had a huge morphological diversity, and their wide range of genetic diversity was revealed through the investigation with 14 molecular markers. The morphological and genomic diversity, chromosome structure, and genome size provide fundamental genomic information for breeding of undomesticated Cw plants.


Assuntos
Cynanchum/genética , Variação Genética , Genoma de Planta , República da Coreia
2.
Front Plant Sci ; 12: 629898, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643358

RESUMO

Tandem repeats can occupy a large portion of plant genomes and can either cause or result from chromosomal rearrangements, which are important drivers of dysploidy-mediated karyotype evolution and speciation. To understand the contribution of tandem repeats in shaping the extant Senna tora dysploid karyotype, we analyzed the composition and abundance of tandem repeats in the S. tora genome and compared the chromosomal distribution of these repeats between S. tora and a closely related euploid, Senna occidentalis. Using a read clustering algorithm, we identified the major S. tora tandem repeats and visualized their chromosomal distribution by fluorescence in situ hybridization. We identified eight independent repeats covering ~85 Mb or ~12% of the S. tora genome. The unit lengths and copy numbers had ranges of 7-5,833 bp and 325-2.89 × 106, respectively. Three short duplicated sequences were found in the 45S rDNA intergenic spacer, one of which was also detected at an extra-NOR locus. The canonical plant telomeric repeat (TTTAGGG)n was also detected as very intense signals in numerous pericentromeric and interstitial loci. StoTR05_180, which showed subtelomeric distribution in Senna occidentalis, was predominantly pericentromeric in S. tora. The unusual chromosomal distribution of tandem repeats in S. tora not only enabled easy identification of individual chromosomes but also revealed the massive chromosomal rearrangements that have likely played important roles in shaping its dysploid karyotype.

3.
Genes Genomics ; 43(3): 237-249, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33655486

RESUMO

BACKGROUND: DNA tandem repeats (TRs) are often abundant and occupy discrete regions in eukaryotic genomes. These TRs often cause or generate chromosomal rearrangements, which, in turn, drive chromosome evolution and speciation. Tracing the chromosomal distribution of TRs could therefore provide insights into the chromosome dynamics and speciation among closely related taxa. The basic chromosome number in the genus Senna is 2n = 28, but dysploid species like Senna tora have also been observed. OBJECTIVE: To understand the dynamics of these TRs and their impact on S. tora dysploidization. METHODS: We performed a comparative fluorescence in situ hybridization (FISH) analysis among nine closely related Senna species and compared the chromosomal distribution of these repeats from a cytotaxonomic perspective by using the ITS1-5.8S-ITS2 sequence to infer phylogenetic relationships. RESULTS: Of the nine S. tora TRs, two did not show any FISH signal whereas seven TRs showed similar and contrasting patterns to other Senna species. StoTR01_86, which was localized in the pericentromeric regions in all S. tora, but not at the nucleolar organizer region (NOR) site, was colocalized at the NOR site in all species except in S. siamea. StoTR02_7_tel was mostly localized at chromosome termini, but some species had an interstitial telomeric repeat in a few chromosomes. StoTR05_180 was distributed in the subtelomeric region in most species and was highly amplified in the pericentromeric region in some species. StoTR06_159 was either absent or colocalized in the NOR site in some species, and StoIGS_463, which was localized at the NOR site in S. tora, was either absent or localized at the subtelomeric or pericentromeric regions in other species. CONCLUSIONS: These data suggest that TRs play important roles in S. tora dysploidy and suggest the involvement of 45S rDNA intergenic spacers in "carrying" repeats during genome reshuffling.


Assuntos
Cromossomos de Plantas , Senna/genética , Sequências de Repetição em Tandem , DNA Ribossômico , Hibridização in Situ Fluorescente , Filogenia , Senna/classificação
4.
Genes Genomics ; 41(7): 839-847, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30903554

RESUMO

BACKGROUND: The family Araliaceae contains many medicinal species including ginseng of which the whole genome sequencing analyses have been going on these days. OBJECTIVE: To characterize the chromosomal distribution of 5S and 45S rDNAs and telomeric repeat in four ginseng related species of Aralia elata (Miq.) Seem., Dendropanax morbiferus H. Lév., Eleutherococcus sessiliflorus (Rupr. Et Maxim.) Seem., Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz. METHOD: Pre-labelled oligoprobe (PLOP)-fluorescence in situ hybridization (FISH) was carried out. RESULTS: The chromosome number of A. elata was 2n = 24, whereas that of the other three species of D. morbiferus, E. sessiliflorus, and K. septemlobus was 2n = 48, corresponding to diploid and tetraploid, respectively, based on the basic chromosome number x = 12 in Araliaceae. In all four species, one pair of 5S signals were detected in the proximal regions of the short arms of chromosome 3, whereas in K. septemlobus, the 5S rDNA signals localized in the subtelomeric region of short arm of chromosome 3, while all the 45S rDNA signals localized at the paracentromeric region of the short arm of chromosome 1. And the telomeric repeat signals were detected at the telomeric region of both short and long arms of most chromosomes. CONCLUSION: The PLOP-FISH was very effective compared with conventional FISH method. These results provide useful comparative cytogenetic information to better understand the genome structure of each species and will be useful to trace the history of ginseng genomic constitution.


Assuntos
Araliaceae/genética , Cariótipo , RNA Ribossômico/genética , Telômero/genética , Hibridização in Situ Fluorescente/métodos , Cariotipagem/métodos
5.
Sci Rep ; 8(1): 8224, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844509

RESUMO

Fluorescence in situ hybridization (FISH) is used to visualize the distribution of DNA elements within a genome. Conventional methods for FISH take 1-2 days. Here, we developed a simplified, rapid FISH technique using pre-labeled oligonucleotide probes (PLOPs) and tested the procedure using 18 PLOPs from 45S and 5S rDNA, Arabidopsis-type telomere, and newly-identified Panax ginseng-specific tandem repeats. The 16 developed rDNA PLOPs can be universally applied to plants and animals. The telomere PLOPs can be utilized in most plants with Arabidopsis-type telomeres. The ginseng-specific PLOP can be used to distinguish P. ginseng from related Panax species. Differential labeling of PLOPs allowed us to simultaneously visualize different target loci while reducing the FISH hybridization time from ~16 h to 5 min. PLOP-FISH is efficient, reliable, and rapid, making it ideal for routine analysis, especially of newly sequenced genomes using either universal or specific targets, such as novel tandem repeats identified from whole-genome sequencing data.


Assuntos
Sondas de DNA/química , Hibridização in Situ Fluorescente/métodos , Sequência de Bases , DNA Ribossômico/genética , Panax/genética , Sequências Repetitivas de Ácido Nucleico , Telômero , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA