Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(6): e56156, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36987917

RESUMO

Natural killer (NK) cells are forced to cope with different oxygen environments even under resting conditions. The adaptation to low oxygen is regulated by oxygen-sensitive transcription factors, the hypoxia-inducible factors (HIFs). The function of HIFs for NK cell activation and metabolic rewiring remains controversial. Activated NK cells are predominantly glycolytic, but the metabolic programs that ensure the maintenance of resting NK cells are enigmatic. By combining in situ metabolomic and transcriptomic analyses in resting murine NK cells, our study defines HIF-1α as a regulator of tryptophan metabolism and cellular nicotinamide adenine dinucleotide (NAD+ ) levels. The HIF-1α/NAD+ axis prevents ROS production during oxidative phosphorylation (OxPhos) and thereby blocks DNA damage and NK cell apoptosis under steady-state conditions. In contrast, in activated NK cells under hypoxia, HIF-1α is required for glycolysis, and forced HIF-1α expression boosts glycolysis and NK cell performance in vitro and in vivo. Our data highlight two distinct pathways by which HIF-1α interferes with NK cell metabolism. While HIF-1α-driven glycolysis is essential for NK cell activation, resting NK cell homeostasis relies on HIF-1α-dependent tryptophan/NAD+ metabolism.


Assuntos
NAD , Triptofano , Camundongos , Animais , Triptofano/metabolismo , Células Matadoras Naturais , Glicólise/genética , Hipóxia/metabolismo , Hipóxia Celular , Oxigênio/metabolismo , Homeostase , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
2.
Front Immunol ; 13: 858051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572512

RESUMO

Innate Lymphoid Cells (ILCs) are the innate counterpart of adaptive lymphoid T cells. They are key players in the regulation of tissues homeostasis and early inflammatory host responses. ILCs are divided into three groups, and further subdivided into five subsets, that are characterised by distinct transcription factors, surface markers and their cytokine expression profiles. Group 1 ILCs, including natural killer (NK) cells and non-NK cell ILC1s, express T-bet and produce IFN-γ. Group 2 ILCs depend on GATA3 and produce IL-4, IL-5 and IL-13. Group 3 ILCs, composed of ILC3s and Lymphoid Tissue Inducer (LTi) cells, express RORγt and produce IL-17 and IL-22. Even though, the phenotype of each subset is well defined, environmental signals can trigger the interconversion of phenotypes and the plasticity of ILCs, in both mice and humans. Several extrinsic and intrinsic drivers of ILC plasticity have been described. However, the changes in cellular metabolism that underlie ILC plasticity remain largely unexplored. Given that metabolic changes critically affect fate and effector function of several immune cell types, we, here, review recent findings on ILC metabolism and discuss the implications for ILC plasticity.


Assuntos
Imunidade Inata , Tecido Linfoide , Animais , Células Matadoras Naturais , Camundongos , Linfócitos T Auxiliares-Indutores
3.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35024767

RESUMO

Gut innate lymphoid cells (ILCs) show remarkable phenotypic diversity, yet microenvironmental factors that drive this plasticity are incompletely understood. The balance between NKp46+, IL-22-producing, group 3 ILCs (ILC3s) and interferon (IFN)-γ-producing group 1 ILCs (ILC1s) contributes to gut homeostasis. The gut mucosa is characterized by physiological hypoxia, and adaptation to low oxygen is mediated by hypoxia-inducible transcription factors (HIFs). However, the impact of HIFs on ILC phenotype and gut homeostasis is not well understood. Mice lacking the HIF-1α isoform in NKp46+ ILCs show a decrease in IFN-γ-expressing, T-bet+, NKp46+ ILC1s and a concomitant increase in IL-22-expressing, RORγt+, NKp46+ ILC3s in the gut mucosa. Single-cell RNA sequencing revealed HIF-1α as a driver of ILC phenotypes, where HIF-1α promotes the ILC1 phenotype by direct up-regulation of T-bet. Loss of HIF-1α in NKp46+ cells prevents ILC3-to-ILC1 conversion, increases the expression of IL-22-inducible genes, and confers protection against intestinal damage. Taken together, our results suggest that HIF-1α shapes the ILC phenotype in the gut.


Assuntos
Antígenos Ly/metabolismo , Plasticidade Celular/imunologia , Trato Gastrointestinal/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Inata , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Animais , Biomarcadores , Suscetibilidade a Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Homeostase , Imunidade nas Mucosas , Imunofenotipagem , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Subpopulações de Linfócitos , Camundongos , Camundongos Knockout , Microbiota , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA