Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114335, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850531

RESUMO

Perturbation of the apoptosis and necroptosis pathways critically influences embryogenesis. Receptor-associated protein kinase-1 (RIPK1) interacts with Fas-associated via death domain (FADD)-caspase-8-cellular Flice-like inhibitory protein long (cFLIPL) to regulate both extrinsic apoptosis and necroptosis. Here, we describe Ripk1-mutant animals (Ripk1R588E [RE]) in which the interaction between FADD and RIPK1 is disrupted, leading to embryonic lethality. This lethality is not prevented by further removal of the kinase activity of Ripk1 (Ripk1R588E K45A [REKA]). Both Ripk1RE and Ripk1REKA animals survive to adulthood upon ablation of Ripk3. While embryonic lethality of Ripk1RE mice is prevented by ablation of the necroptosis effector mixed lineage kinase-like (MLKL), animals succumb to inflammation after birth. In contrast, Mlkl ablation does not prevent the death of Ripk1REKA embryos, but animals reach adulthood when both MLKL and caspase-8 are removed. Ablation of the nucleic acid sensor Zbp1 largely prevents lethality in both Ripk1RE and Ripk1REKA embryos. Thus, the RIPK1-FADD interaction prevents Z-DNA binding protein-1 (ZBP1)-induced, RIPK3-caspase-8-mediated embryonic lethality, affected by the kinase activity of RIPK1.

2.
JBMR Plus ; 8(6): ziae050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699440

RESUMO

Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.

3.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467404

RESUMO

The mitochondrial contact site and cristae organizing system (MICOS) is important for crista junction formation and for maintaining inner mitochondrial membrane architecture. A key component of the MICOS complex is MIC60, which has been well studied in yeast and cell culture models. However, only one recent study has demonstrated the embryonic lethality of losing Immt (the gene encoding MIC60) expression. Tamoxifen-inducible ROSA-CreERT2-mediated deletion of Immt in adult mice disrupted the MICOS complex, increased mitochondria size, altered cristae morphology, and was lethal within 12 d. Pathologically, these mice displayed defective intestinal muscle function (paralytic ileus) culminating in dehydration. We also identified bone marrow (BM) hypocellularity in Immt-deleted mice, although BM transplants from wild-type mice did not improve survival. Altogether, this inducible mouse model demonstrates the importance of MIC60 in vivo, in both hematopoietic and non-hematopoietic tissues, and provides a valuable resource for future mechanistic investigations into the MICOS complex.


Assuntos
Membranas Associadas à Mitocôndria , Proteínas Mitocondriais , Animais , Camundongos , Proteínas Mitocondriais/metabolismo , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
J Cell Sci ; 136(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37305998

RESUMO

Besides assembling nuclear pore complexes, the conduits of nuclear transport, many nucleoporins also contribute to chromatin organization and gene expression, with critical roles in development and pathologies. We previously reported that Nup133 and Seh1, two components of the Y-complex subassembly of the nuclear pore scaffold, are dispensable for mouse embryonic stem cell viability but required for their survival during neuroectodermal differentiation. Here, a transcriptomic analysis revealed that Nup133 regulates a subset of genes at early stages of neuroectodermal differentiation, including Lhx1 and Nup210l, which encodes a newly validated nucleoporin. These genes are also misregulated in Nup133ΔMid neuronal progenitors, in which nuclear pore basket assembly is impaired. However, a four-fold reduction of Nup133 levels, despite also affecting basket assembly, is not sufficient to alter Nup210l and Lhx1 expression. Finally, these two genes are also misregulated in Seh1-deficient neural progenitors, which only show a mild reduction in nuclear pore density. Together these data reveal a shared function of Y-complex nucleoporins in gene regulation during neuroectodermal differentiation, apparently independent of nuclear pore basket integrity.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Animais , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poro Nuclear/genética , Regulação da Expressão Gênica , Perfilação da Expressão Gênica , Células-Tronco Embrionárias Murinas
6.
Curr Biol ; 33(5): 858-874.e7, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917931

RESUMO

Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.


Assuntos
Actomiosina , Células Epiteliais , Animais , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Actomiosina/metabolismo , Divisão Celular , Citocinese , Drosophila
7.
STAR Protoc ; 4(1): 102116, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853660

RESUMO

In this protocol, we describe the generation of conditional alleles in mice using the DECAI (DEgradation based on Cre-regulated Artificial Intron) approach. We detail steps for the CRISPR-mediated insertion of the short DECAI cassette within exon 3 of Scyl1 and the functional validation of alleles at genomic, transcriptomic, and protein levels. This strategy simplifies the process of generating mice with conditional alleles. For complete details on the use and execution of this protocol, please refer to Cassidy et al. (2022).1.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Alelos , Íntrons/genética , Éxons/genética
8.
Bone ; 167: 116612, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36379415

RESUMO

Genetically modified mouse models have shaped our understanding of biological systems in both physiological and pathological conditions. For decades, mouse genome engineering has relied on transgenesis and spontaneous gene replacement in embryonic stem (ES) cells. While these technologies provided a wealth of knowledge, they remain imprecise and expensive to use. Recent advances in genome editing technologies such as the development of targetable nucleases, the improvement of delivery systems, and the simplification of targeting strategies now allow for the rapid, precise manipulation of the mouse genome. In this review article, we discuss novel methods and targeting strategies for the generation of mouse models for the study of bone and skeletal muscle biology.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Animais Geneticamente Modificados , Terapia Genética , Engenharia Genética/métodos
9.
Front Immunol ; 13: 1068230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505497

RESUMO

Interleukin 1α (IL-1α) and IL-1ß are the founding members of the IL-1 cytokine family, and these innate immune inflammatory mediators are critically important in health and disease. Early studies on these molecules suggested that their expression was interdependent, with an initial genetic model of IL-1α depletion, the IL-1α KO mouse (Il1a-KOline1), showing reduced IL-1ß expression. However, studies using this line in models of infection and inflammation resulted in contrasting observations. To overcome the limitations of this genetic model, we have generated and characterized a new line of IL-1α KO mice (Il1a-KOline2) using CRISPR-Cas9 technology. In contrast to cells from Il1a-KOline1, where IL-1ß expression was drastically reduced, bone marrow-derived macrophages (BMDMs) from Il1a-KOline2 mice showed normal induction and activation of IL-1ß. Additionally, Il1a-KOline2 BMDMs showed normal inflammasome activation and IL-1ß expression in response to multiple innate immune triggers, including both pathogen-associated molecular patterns and pathogens. Moreover, using Il1a-KOline2 cells, we confirmed that IL-1α, independent of IL-1ß, is critical for the expression of the neutrophil chemoattractant KC/CXCL1. Overall, we report the generation of a new line of IL-1α KO mice and confirm functions for IL-1α independent of IL-1ß. Future studies on the unique functions of IL-1α and IL-1ß using these mice will be critical to identify new roles for these molecules in health and disease and develop therapeutic strategies.


Assuntos
Inflamassomos , Interleucina-1alfa , Animais , Camundongos , Inflamassomos/genética , Interleucina-1alfa/genética , Interleucina-8 , Macrófagos , Camundongos Knockout
10.
Proc Natl Acad Sci U S A ; 119(41): e2207240119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191211

RESUMO

The absence of Caspase-8 or its adapter, Fas-associated death domain (FADD), results in activation of receptor interacting protein kinase-3 (RIPK3)- and mixed-lineage kinase-like (MLKL)-dependent necroptosis in vivo. Here, we show that spontaneous activation of RIPK3, phosphorylation of MLKL, and necroptosis in Caspase-8- or FADD-deficient cells was dependent on the nucleic acid sensor, Z-DNA binding protein-1 (ZBP1). We genetically engineered a mouse model by a single insertion of FLAG tag onto the N terminus of endogenous MLKL (MlklFLAG/FLAG), creating an inactive form of MLKL that permits monitoring of phosphorylated MLKL without activating necroptotic cell death. Casp8-/-MlklFLAG/FLAG mice were viable and displayed phosphorylated MLKL in a variety of tissues, together with dramatically increased expression of ZBP1 compared to Casp8+/+ mice. Studies in vitro revealed an increased expression of ZBP1 in cells lacking FADD or Caspase-8, which was suppressed by reconstitution of Caspase-8 or FADD. Ablation of ZBP1 in Casp8-/-MlklFLAG/FLAG mice suppressed spontaneous MLKL phosphorylation in vivo. ZBP1 expression and downstream activation of RIPK3 and MLKL in cells lacking Caspase-8 or FADD relied on a positive feedback mechanism requiring the nucleic acid sensors cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and TBK1 signaling pathways. Our study identifies a molecular mechanism whereby Caspase-8 and FADD suppress spontaneous necroptotic cell death.


Assuntos
Necroptose , Ácidos Nucleicos , Animais , Apoptose/fisiologia , Caspase 8/genética , Caspase 8/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Interferons/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
11.
Methods Enzymol ; 667: 775-812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525561

RESUMO

Allelic series are extremely valuable genetic tools to study gene function and identify essential structural features of gene products. In mice, allelic series have been engineered using conventional gene targeting in embryonic stem cells or chemical mutagenesis. While these approaches have provided valuable information about the function of genes, they remain cumbersome. Modern approaches such as CRISPR-Cas9 technologies now allow for the precise and cost-effective generation of mouse models with specific mutations, facilitating the development of allelic series. Here, we describe procedures for the generation of three types of mutations used to dissect protein function in vivo using CRISPR-Cas9 technology. This step-by-step protocol describes the generation of missense mutations, large in-frame deletions, and insertions of genetic material using SCY1-like 1 (Scyl1) as a model gene.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Marcação de Genes , Camundongos , Mutagênese , Tecnologia
12.
Heliyon ; 8(12): e12630, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36619446

RESUMO

Despite tremendous advances in genome editing technologies, generation of conditional alleles in mice has remained challenging. Recent studies in cells have successfully made use of short artificial introns to engineer conditional alleles. The approach consists of inserting a small cassette within an exon of a gene using CRISPR-Cas9 technology. The cassette, referred to as Artificial Intron version 4 (AIv4), contains sequences encoding a splice donor, essential intronic sequences flanked by loxP sites and a splice acceptor site. Under normal conditions, the artificial intron is removed by the splicing machinery, allowing for proper expression of the gene product. Following Cre-mediated recombination of the two loxP sites, the intron is disabled, and splicing can no longer occur. The remaining intronic sequences create a frameshift and early translation termination. Here we describe the application of this technology to engineer a conditional allele in mice using Scyl1 as a model gene. Insertion of the cassette occurred in 17% of edited mice obtained from pronuclear stage zygote microinjection. Mice homozygous for the insertion expressed SCYL1 at levels comparable to wild-type mice and showed no overt abnormalities associated with the loss of Scyl1 function, indicating the proper removal of the artificial intron. Inactivation of the cassette via Cre-mediated recombination in vivo occurred at high frequency, abrogated SCYL1 protein expression, and resulted in loss-of-function phenotypes. Our results broaden the applicability of this approach to engineering conditional alleles in mice.

13.
Dev Cell ; 56(24): 3393-3404.e7, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34879263

RESUMO

Deciphering gene function requires the ability to control gene expression in space and time. Binary systems such as the Gal4/UAS provide a powerful means to modulate gene expression and to induce loss or gain of function. This is best exemplified in Drosophila, where the Gal4/UAS system has been critical to discover conserved mechanisms in development, physiology, neurobiology, and metabolism, to cite a few. Here we describe a transgenic light-inducible Gal4/UAS system (ShineGal4/UAS) based on Magnet photoswitches. We show that it allows efficient, rapid, and robust activation of UAS-driven transgenes in different tissues and at various developmental stages in Drosophila. Furthermore, we illustrate how ShineGal4 enables the generation of gain and loss-of-function phenotypes at animal, organ, and cellular levels. Thanks to the large repertoire of UAS-driven transgenes, ShineGal4 enriches the Drosophila genetic toolkit by allowing in vivo control of gene expression with high temporal and spatial resolutions.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Optogenética , Animais , Padronização Corporal/genética , Padronização Corporal/efeitos da radiação , Drosophila melanogaster/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Luz , Especificidade de Órgãos/genética , Especificidade de Órgãos/efeitos da radiação , Pupa/genética , Pupa/efeitos da radiação , Fatores de Tempo
14.
Cancer Res ; 81(19): 5047-5059, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301764

RESUMO

Immune cells regulate tumor growth by mirroring their function as tissue repair organizers in normal tissues. To understand the different facets of immune-tumor collaboration through genetics, spatial transcriptomics, and immunologic manipulation with noninvasive, longitudinal imaging, we generated a penetrant double oncogene-driven autochthonous model of neuroblastoma. Spatial transcriptomic analysis showed that CD4+ and myeloid populations colocalized within the tumor parenchyma, while CD8+ T cells and B cells were peripherally dispersed. Depletion of CD4+ T cells or CCR2+ macrophages, but not B cells, CD8+ T cells, or natural killer (NK) cells, prevented tumor formation. Tumor CD4+ T cells displayed unconventional phenotypes and were clonotypically diverse and antigen independent. Within the myeloid fraction, tumor growth required myeloid cells expressing arginase-1. Overall, these results demonstrate how arginine-metabolizing myeloid cells conspire with pathogenic CD4+ T cells to create permissive conditions for tumor formation, suggesting that these protumorigenic pathways could be disabled by targeting myeloid arginine metabolism. SIGNIFICANCE: A new model of human neuroblastoma provides ways to track tumor formation and expansion in living animals, allowing identification of CD4+ T-cell and macrophage functions required for oncogenesis.


Assuntos
Arginase/genética , Linfócitos T CD4-Positivos/metabolismo , Suscetibilidade a Doenças , Células Mieloides/metabolismo , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Animais , Arginase/metabolismo , Biomarcadores , Células da Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Neuroblastoma/patologia , Oncogenes , Análise de Célula Única , Transcriptoma
15.
Am J Med Genet A ; 185(4): 1091-1097, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33442927

RESUMO

SCYL1 disease results from biallelic pathogenic variants in SCYL1. We report two new patients with severe hepatic phenotype requiring liver transplantation. Patient charts reviewed. DNA samples and skin fibroblasts were utilized. Literature was reviewed. 13-year-old boy and 9-year-old girl siblings had acute liver insufficiency and underwent living related donor liver transplantation in infancy with no genetic diagnosis. Both had tremor, global developmental delay, and cognitive dysfunction during their follow-up in the medical genetic clinic for diagnostic investigations after their liver transplantation. Exome sequencing identified a likely pathogenic variant (c.399delC; p.Asn133Lysfs*136) in SCYL1. Deletion/duplication analysis of SCYL1 identified deletions of exons 7-8 in Patient 1. Both variants were confirmed in Patient 2 and the diagnosis of SCYL1 disease was confirmed in both patients at the age of 13 and 9 years, respectively. SCYL1 protein was not expressed in both patients' fibroblast using western blot analysis. Sixteen patients with SCYL1 disease reported in the literature. Liver phenotype (n = 16), neurological phenotype (n = 13) and skeletal phenotype (n = 11) were present. Both siblings required liver transplantation in infancy and had variable phenotypes. Exome sequencing may miss the diagnosis and phenotyping of patients can help to diagnose patients.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas de Ligação a DNA/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Malformações do Sistema Nervoso/genética , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Adolescente , Criança , Proteínas de Ligação a DNA/deficiência , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/terapia , Feminino , Humanos , Fígado/patologia , Fígado/cirurgia , Transplante de Fígado , Doadores Vivos , Masculino , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/patologia , Malformações do Sistema Nervoso/terapia , Irmãos , Sequenciamento do Exoma
16.
STAR Protoc ; 1(3): 100181, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377075

RESUMO

The purpose of this protocol is to describe the generation of missense mutations in mice using CRISPR-Cas9 technology. The current protocol focuses on the generation of a Casp8FL122/123GG missense mutation, but it can be adapted to introduce any missense or nonsense mutation. For complete details on the use and execution of this protocol, please refer to Tummers et al. (2020).


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Caspase 8/genética , Alelos , Animais , Sequência de Bases , Proteína 9 Associada à CRISPR/genética , Feminino , Genótipo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microinjeções , Reação em Cadeia da Polimerase , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Zigoto/metabolismo
17.
Science ; 370(6514)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060329

RESUMO

Biological systems tailor their properties and behavior to their size throughout development and in numerous aspects of physiology. However, such size scaling remains poorly understood as it applies to cell mechanics and mechanosensing. By examining how the Drosophila pupal dorsal thorax epithelium responds to morphogenetic forces, we found that the number of apical stress fibers (aSFs) anchored to adherens junctions scales with cell apical area to limit larger cell elongation under mechanical stress. aSFs cluster Hippo pathway components, thereby scaling Hippo signaling and proliferation with area. This scaling is promoted by tricellular junctions mediating an increase in aSF nucleation rate and lifetime in larger cells. Development, homeostasis, and repair entail epithelial cell size changes driven by mechanical forces; our work highlights how, in turn, mechanosensitivity scales with cell size.


Assuntos
Epitélio/fisiologia , Mecanotransdução Celular , Fibras de Estresse/fisiologia , Estresse Mecânico , Animais , Caderinas/metabolismo , Tamanho Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Epiteliais/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miosina Tipo II/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Proteínas de Sinalização YAP
18.
Dev Cell ; 54(5): 583-592.e5, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32888416

RESUMO

Planar cell polarity (PCP) organizes the orientation of cellular protrusions and migratory activity within the tissue plane. PCP establishment involves the subcellular polarization of core PCP components. It has been suggested that Wnt gradients could provide a global cue that coordinates local PCP with tissue axes. Here, we dissect the role of Wnt ligands in the orientation of hairs of Drosophila wings, an established system for the study of PCP. We found that PCP was normal in quintuple mutant wings that rely solely on the membrane-tethered Wingless for Wnt signaling, suggesting that a Wnt gradient is not required. We then used a nanobody-based approach to trap Wntless in the endoplasmic reticulum, and hence prevent all Wnt secretion, specifically during the period of PCP establishment. PCP was still established. We conclude that, even though Wnt ligands could contribute to PCP, they are not essential, and another global cue must exist for tissue-wide polarization.


Assuntos
Polaridade Celular/fisiologia , Asas de Animais/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ligantes , Asas de Animais/patologia
19.
Immunity ; 52(6): 994-1006.e8, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32428502

RESUMO

Cell death pathways regulate various homeostatic processes. Autoimmune lymphoproliferative syndrome (ALPS) in humans and lymphoproliferative (LPR) disease in mice result from abrogated CD95-induced apoptosis. Because caspase-8 mediates CD95 signaling, we applied genetic approaches to dissect the roles of caspase-8 in cell death and inflammation. Here, we describe oligomerization-deficient Caspase-8F122GL123G/F122GL123G and non-cleavable Caspase-8D387A/D387A mutant mice with defective caspase-8-mediated apoptosis. Although neither mouse developed LPR disease, removal of the necroptosis effector Mlkl from Caspase-8D387A/D387A mice revealed an inflammatory role of caspase-8. Ablation of one allele of Fasl, Fadd, or Ripk1 prevented the pathology of Casp8D387A/D387AMlkl-/- animals. Removing both Fadd alleles from these mice resulted in early lethality prior to post-natal day 15 (P15), which was prevented by co-ablation of either Ripk1 or Caspase-1. Our results suggest an in vivo role of the inflammatory RIPK1-caspase-8-FADD (FADDosome) complex and reveal a FADD-independent inflammatory role of caspase-8 that involves activation of an inflammasome.


Assuntos
Caspase 8/genética , Suscetibilidade a Doenças , Proteína de Domínio de Morte Associada a Fas/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Necroptose/genética , Animais , Apoptose/genética , Biomarcadores , Caspase 8/química , Caspase 8/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Imunofluorescência , Regulação da Expressão Gênica , Inflamassomos/metabolismo , Inflamação/mortalidade , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Mortalidade , Fenótipo , Multimerização Proteica
20.
Sci Rep ; 10(1): 3326, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075994

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA