Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 29(12): 3175-3183, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973947

RESUMO

Gene therapy (GT) provides a potentially curative treatment option for patients with sickle cell disease (SCD); however, the occurrence of myeloid malignancies in GT clinical trials has prompted concern, with several postulated mechanisms. Here, we used whole-genome sequencing to track hematopoietic stem cells (HSCs) from six patients with SCD at pre- and post-GT time points to map the somatic mutation and clonal landscape of gene-modified and unmodified HSCs. Pre-GT, phylogenetic trees were highly polyclonal and mutation burdens per cell were elevated in some, but not all, patients. Post-GT, no clonal expansions were identified among gene-modified or unmodified cells; however, an increased frequency of potential driver mutations associated with myeloid neoplasms or clonal hematopoiesis (DNMT3A- and EZH2-mutated clones in particular) was observed in both genetically modified and unmodified cells, suggesting positive selection of mutant clones during GT. This work sheds light on HSC clonal dynamics and the mutational landscape after GT in SCD, highlighting the enhanced fitness of some HSCs harboring pre-existing driver mutations. Future studies should define the long-term fate of mutant clones, including any contribution to expansions associated with myeloid neoplasms.


Assuntos
Anemia Falciforme , Neoplasias , Humanos , Hematopoese/genética , Filogenia , Mutação/genética , Células-Tronco Hematopoéticas/patologia , Células Clonais , Anemia Falciforme/genética , Anemia Falciforme/terapia , Anemia Falciforme/patologia , Terapia Genética , Neoplasias/patologia
2.
Mol Ther Methods Clin Dev ; 31: 101131, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37920236

RESUMO

Ex vivo gene therapy (GT) is a promising treatment for inherited genetic diseases. An ideal transduction protocol should determine high gene marking in long-term self-renewing hematopoietic stem cells (HSCs), preserving their repopulation potential during in vitro manipulation. In the context of the improvement of a clinically applicable transduction protocol, we tested prostaglandin E2 (PGE2) as a transduction enhancer (TE). The addition of PGE2 shortly before transduction of human CD34+ cells determined a significant transduction increase in the in vitro cell progeny paralleled by a significant reduction of their clonogenic potential. This effect increased with the duration of PGE2 exposure and correlated with an increase of CXCR4 expression. Blockage of CXCR4 with AMD3100 (plerixafor, Mozobil) did not affect transduction efficiency but partially rescued CD34+ clonogenic impairment in vitro. Once transplanted in vivo in a competitive repopulation assay, human CD34+ cells transduced with PGE2 contributed significantly less than cells transduced with a standard protocol to the repopulation of recipient mice, indicating a relative repopulation disadvantage of the PGE2-treated CD34+ cells and a counter-selection for the PGE2-treated cell progeny in vivo. In conclusion, our data indicate the need for risk/benefit evaluations in the use of PGE2 as a TE for clinical protocols of GT.

3.
Bioinformatics ; 39(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37774002

RESUMO

MOTIVATION: Investigating cell differentiation under a genetic disorder offers the potential for improving current gene therapy strategies. Clonal tracking provides a basis for mathematical modelling of population stem cell dynamics that sustain the blood cell formation, a process known as haematopoiesis. However, many clonal tracking protocols rely on a subset of cell types for the characterization of the stem cell output, and the data generated are subject to measurement errors and noise. RESULTS: We propose a stochastic framework to infer dynamic models of cell differentiation from clonal tracking data. A state-space formulation combines a stochastic quasi-reaction network, describing cell differentiation, with a Gaussian measurement model accounting for data errors and noise. We developed an inference algorithm based on an extended Kalman filter, a nonlinear optimization, and a Rauch-Tung-Striebel smoother. Simulations show that our proposed method outperforms the state-of-the-art and scales to complex structures of cell differentiations in terms of nodes size and network depth. The application of our method to five in vivo gene therapy studies reveals different dynamics of cell differentiation. Our tool can provide statistical support to biologists and clinicians to better understand cell differentiation and haematopoietic reconstitution after a gene therapy treatment. The equations of the state-space model can be modified to infer other dynamics besides cell differentiation. AVAILABILITY AND IMPLEMENTATION: The stochastic framework is implemented in the R package Karen which is available for download at https://cran.r-project.org/package=Karen. The code that supports the findings of this study is openly available at https://github.com/delcore-luca/CellDifferentiationNetworks.


Assuntos
Algoritmos , Modelos Teóricos , Diferenciação Celular , Hematopoese/genética , Redes Reguladoras de Genes
4.
Nature ; 621(7978): 404-414, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648862

RESUMO

Despite the considerable efficacy observed when targeting a dispensable lineage antigen, such as CD19 in B cell acute lymphoblastic leukaemia1,2, the broader applicability of adoptive immunotherapies is hampered by the absence of tumour-restricted antigens3-5. Acute myeloid leukaemia immunotherapies target genes expressed by haematopoietic stem/progenitor cells (HSPCs) or differentiated myeloid cells, resulting in intolerable on-target/off-tumour toxicity. Here we show that epitope engineering of donor HSPCs used for bone marrow transplantation endows haematopoietic lineages with selective resistance to chimeric antigen receptor (CAR) T cells or monoclonal antibodies, without affecting protein function or regulation. This strategy enables the targeting of genes that are essential for leukaemia survival regardless of shared expression on HSPCs, reducing the risk of tumour immune escape. By performing epitope mapping and library screenings, we identified amino acid changes that abrogate the binding of therapeutic monoclonal antibodies targeting FLT3, CD123 and KIT, and optimized a base-editing approach to introduce them into CD34+ HSPCs, which retain long-term engraftment and multilineage differentiation ability. After CAR T cell treatment, we confirmed resistance of epitope-edited haematopoiesis and concomitant eradication of patient-derived acute myeloid leukaemia xenografts. Furthermore, we show that multiplex epitope engineering of HSPCs is feasible and enables more effective immunotherapies against multiple targets without incurring overlapping off-tumour toxicities. We envision that this approach will provide opportunities to treat relapsed/refractory acute myeloid leukaemia and enable safer non-genotoxic conditioning.


Assuntos
Epitopos , Edição de Genes , Imunoterapia , Leucemia Mieloide Aguda , Animais , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos CD34/metabolismo , Transplante de Medula Óssea , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Hematopoese , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Xenoenxertos/imunologia , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos Quiméricos/imunologia , Recidiva , Linfócitos T/imunologia , Condicionamento Pré-Transplante , Evasão Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Blood ; 142(15): 1281-1296, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37478401

RESUMO

Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder characterized by combined immunodeficiency, eczema, microthrombocytopenia, autoimmunity, and lymphoid malignancies. Gene therapy (GT) to modify autologous CD34+ cells is an emerging alternative treatment with advantages over standard allogeneic hematopoietic stem cell transplantation for patients who lack well-matched donors, avoiding graft-versus-host-disease. We report the outcomes of a phase 1/2 clinical trial in which 5 patients with severe WAS underwent GT using a self-inactivating lentiviral vector expressing the human WAS complementary DNA under the control of a 1.6-kB fragment of the autologous promoter after busulfan and fludarabine conditioning. All patients were alive and well with sustained multilineage vector gene marking (median follow-up: 7.6 years). Clinical improvement of eczema, infections, and bleeding diathesis was universal. Immune function was consistently improved despite subphysiologic levels of transgenic WAS protein expression. Improvements in platelet count and cytoskeletal function in myeloid cells were most prominent in patients with high vector copy number in the transduced product. Two patients with a history of autoimmunity had flares of autoimmunity after GT, despite similar percentages of WAS protein-expressing cells and gene marking to those without autoimmunity. Patients with flares of autoimmunity demonstrated poor numerical recovery of T cells and regulatory T cells (Tregs), interleukin-10-producing regulatory B cells (Bregs), and transitional B cells. Thus, recovery of the Breg compartment, along with Tregs appears to be protective against development of autoimmunity after GT. These results indicate that clinical and laboratory manifestations of WAS are improved with GT with an acceptable safety profile. This trial is registered at clinicaltrials.gov as #NCT01410825.


Assuntos
Eczema , Transplante de Células-Tronco Hematopoéticas , Síndrome de Wiskott-Aldrich , Humanos , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Proteína da Síndrome de Wiskott-Aldrich/genética , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Terapia Genética/métodos , Eczema/etiologia , Eczema/metabolismo , Eczema/terapia
6.
BMC Bioinformatics ; 24(1): 228, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268887

RESUMO

BACKGROUND: Mathematical models of haematopoiesis can provide insights on abnormal cell expansions (clonal dominance), and in turn can guide safety monitoring in gene therapy clinical applications. Clonal tracking is a recent high-throughput technology that can be used to quantify cells arising from a single haematopoietic stem cell ancestor after a gene therapy treatment. Thus, clonal tracking data can be used to calibrate the stochastic differential equations describing clonal population dynamics and hierarchical relationships in vivo. RESULTS: In this work we propose a random-effects stochastic framework that allows to investigate the presence of events of clonal dominance from high-dimensional clonal tracking data. Our framework is based on the combination between stochastic reaction networks and mixed-effects generalized linear models. Starting from the Kramers-Moyal approximated Master equation, the dynamics of cells duplication, death and differentiation at clonal level, can be described by a local linear approximation. The parameters of this formulation, which are inferred using a maximum likelihood approach, are assumed to be shared across the clones and are not sufficient to describe situation in which clones exhibit heterogeneity in their fitness that can lead to clonal dominance. In order to overcome this limitation, we extend the base model by introducing random-effects for the clonal parameters. This extended formulation is calibrated to the clonal data using a tailor-made expectation-maximization algorithm. We also provide the companion  package RestoreNet, publicly available for download at https://cran.r-project.org/package=RestoreNet . CONCLUSIONS: Simulation studies show that our proposed method outperforms the state-of-the-art. The application of our method in two in-vivo studies unveils the dynamics of clonal dominance. Our tool can provide statistical support to biologists in gene therapy safety analyses.


Assuntos
Algoritmos , Modelos Teóricos , Funções Verossimilhança , Simulação por Computador , Células Clonais , Processos Estocásticos
7.
bioRxiv ; 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37292647

RESUMO

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for ß-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here we compared combined CRISPR-Cas9 endonuclease editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. We found that combined targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two sgRNAs resulted in superior HbF induction, including in engrafting erythroid cells from sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers. We corroborated prior observations that double strand breaks (DSBs) could produce unintended on- target outcomes in hematopoietic stem and progenitor cells (HSPCs) such as long deletions and centromere-distal chromosome fragment loss. We show these unintended outcomes are a byproduct of cellular proliferation stimulated by ex vivo culture. Editing HSPCs without cytokine culture bypassed long deletion and micronuclei formation while preserving efficient on-target editing and engraftment function. These results indicate that nuclease editing of quiescent hematopoietic stem cells (HSCs) limits DSB genotoxicity while maintaining therapeutic potency and encourages efforts for in vivo delivery of nucleases to HSCs.

8.
Mol Ther Methods Clin Dev ; 28: 28-39, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36588821

RESUMO

Integrating vectors are associated with alterations in cellular function related to disruption of normal gene function. This has been associated with clonal expansion of cells and, in some instances, cancer. These events have been associated with replication-defective vectors and suggest that the inadvertent exposure to a replication-competent virus arising during vector manufacture would significantly increase the risk of treatment-related adverse events. These risks have led regulatory agencies to require specific monitoring for replication-competent viruses, both prior to and after treatment of patients with gene therapy products. Monitoring the risk of cell expansion and malignancy is also required. In this review, we discuss the rational potential approaches and challenges to meeting the US FDA expectations listed in current guidance documents.

9.
Front Immunol ; 12: 672123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168645

RESUMO

Lymph nodes are key lymphoid organs collecting lymph fluid and migratory cells from the tissue area they survey. When cancerous cells arise within a tissue, the sentinel lymph node is the first immunological organ to mount an immune response. Sub-capsular sinus macrophages (SSMs) are specialized macrophages residing in the lymph nodes that play important roles as gatekeepers against particulate antigenic material. In the context of cancer, SSMs capture tumor-derived extracellular vesicles (tEVs), a form of particulate antigen released in high amounts by tumor cells. We and others have recently demonstrated that SSMs possess anti-tumor activity because in their absence tumors progress faster. A comprehensive profiling of SSMs represents an important first step to identify the cellular and molecular mechanisms responsible for SSM anti-tumor activity. Unfortunately, the isolation of SSMs for molecular analyses is very challenging. Here, we combined an optimized dissociation protocol, careful marker selection and stringent gating strategies to highly purify SSMs. We provide evidence of decreased T and B cell contamination, which allowed us to reveal the gene expression profile of this elusive macrophage subset. Squamous cell carcinomas induced an increase in the expression of Fc receptors, lysosomal and proteasomal enzymes in SSMs. Imaging of mouse and patient lymph nodes confirmed the presence of the top differentially expressed genes. These results suggest that SSMs respond to tumor formation by upregulating the machinery necessary for presentation of tumor particulate antigens to B cells.


Assuntos
Carcinoma de Células Escamosas/imunologia , Perfilação da Expressão Gênica/métodos , Linfonodos/imunologia , Macrófagos/imunologia , Animais , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Nat Commun ; 12(1): 1622, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712608

RESUMO

Our mathematical model of integration site data in clinical gene therapy supported the existence of long-term lymphoid progenitors capable of surviving independently from hematopoietic stem cells. To date, no experimental setting has been available to validate this prediction. We here report evidence of a population of lymphoid progenitors capable of independently maintaining T and NK cell production for 15 years in humans. The gene therapy patients of this study lack vector-positive myeloid/B cells indicating absence of engineered stem cells but retain gene marking in both T and NK. Decades after treatment, we can still detect and analyse transduced naïve T cells whose production is likely maintained by a population of long-term lymphoid progenitors. By tracking insertional clonal markers overtime, we suggest that these progenitors can support both T and NK cell production. Identification of these long-term lymphoid progenitors could be utilised for the development of next generation gene- and cancer-immunotherapies.


Assuntos
Células Matadoras Naturais/fisiologia , Linfócitos/fisiologia , Células Progenitoras Linfoides/fisiologia , Linfócitos T/fisiologia , Linfócitos B , Terapia Genética/métodos , Células-Tronco Hematopoéticas , Humanos , Interferon gama/metabolismo , Mutagênese , Células Mieloides/fisiologia , Proto-Oncogenes/genética , Proto-Oncogenes/fisiologia
11.
J Clin Invest ; 130(12): 6677-6687, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32897878

RESUMO

Gene editing of the erythroid-specific BCL11A enhancer in hematopoietic stem and progenitor cells (HSPCs) from patients with sickle cell disease (SCD) induces fetal hemoglobin (HbF) without detectable toxicity, as assessed by mouse xenotransplant. Here, we evaluated autologous engraftment and HbF induction potential of erythroid-specific BCL11A enhancer-edited HSPCs in 4 nonhuman primates. We used a single guide RNA (sgRNA) with identical human and rhesus target sequences to disrupt a GATA1 binding site at the BCL11A +58 erythroid enhancer. Cas9 protein and sgRNA ribonucleoprotein complex (RNP) was electroporated into rhesus HSPCs, followed by autologous infusion after myeloablation. We found that gene edits persisted in peripheral blood (PB) and bone marrow (BM) for up to 101 weeks similarly for BCL11A enhancer- or control locus-targeted (AAVS1-targeted) cells. Biallelic BCL11A enhancer editing resulted in robust γ-globin induction, with the highest levels observed during stress erythropoiesis. Indels were evenly distributed across PB and BM lineages. Off-target edits were not observed. Nonhomologous end-joining repair alleles were enriched in engrafting HSCs. In summary, we found that edited HSCs can persist for at least 101 weeks after transplant and biallelic-edited HSCs provide substantial HbF levels in PB red blood cells, together supporting further clinical translation of this approach.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Proteínas Repressoras , Animais , Humanos , Macaca mulatta , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transplante Autólogo
12.
Mol Ther Methods Clin Dev ; 17: 589-600, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32300607

RESUMO

In this work we provide preclinical data to support initiation of a first-in-human trial for sickle cell disease (SCD) using an approach that relies on reversal of the developmental fetal-to-adult hemoglobin switch. Erythroid-specific knockdown of BCL11A via a lentiviral-encoded microRNA-adapted short hairpin RNA (shRNAmiR) leads to reactivation of the gamma-globin gene while simultaneously reducing expression of the pathogenic adult sickle ß-globin. We generated a refined lentiviral vector (LVV) BCH-BB694 that was developed to overcome poor vector titers observed in the manufacturing scale-up of the original research-grade LVV. Healthy or sickle cell donor CD34+ cells transduced with Good Manufacturing Practices (GMP)-grade BCH-BB694 LVV achieved high vector copy numbers (VCNs) >5 and gene marking of >80%, resulting in a 3- to 5-fold induction of fetal hemoglobin (HbF) compared with mock-transduced cells without affecting growth, differentiation, and engraftment of gene-modified cells in vitro or in vivo. In vitro immortalization assays, which are designed to measure vector-mediated genotoxicity, showed no increased immortalization compared with mock-transduced cells. Together these data demonstrate that BCH-BB694 LVV is non-toxic and efficacious in preclinical studies, and can be generated at a clinically relevant scale in a GMP setting at high titer to support clinical testing for the treatment of SCD.

13.
Nat Commun ; 10(1): 2395, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160568

RESUMO

Hematopoietic Stem/Progenitor cells (HSPCs) are endowed with the role of maintaining a diverse pool of blood cells throughout the human life. Despite recent efforts, the nature of the early cell fate decisions remains contentious. Using single-cell RNA-Seq, we show that existing approaches to stratify bone marrow CD34+ cells reveal a hierarchically-structured transcriptional landscape of hematopoietic differentiation. Still, this landscape misses important early fate decisions. We here provide a broader transcriptional profiling of bone marrow lineage negative hematopoietic progenitors that recovers a key missing branchpoint into basophils and expands our understanding of the underlying structure of early adult human haematopoiesis. We also show that this map has strong similarities in topology and gene expression to that found in mouse. Finally, we identify the sialomucin CD164, as a reliable marker for the earliest branches of HSPCs specification and we showed how its use can foster the design of alternative transplantation cell products.


Assuntos
Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Antígenos CD34/metabolismo , Células da Medula Óssea , Linhagem da Célula , Endolina/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Análise de Sequência de RNA , Análise de Célula Única
15.
Nat Med ; 24(11): 1683-1690, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30275570

RESUMO

Hematopoietic stem and progenitor cells (HSPC) are endowed with the role of generating and maintaining lifelong the extremely diverse pool of blood cells1. Clinically, transplantation of human HSPC from an allogeneic healthy donor or infusion of autologous gene-corrected HSPC can effectively replenish defective blood cell production caused by congenital or acquired disorders2-9. However, due to methodological and ethical constraints that have limited the study of human HSPC primarily to in vitro assays10 or xenotransplantation models11,12, the in vivo activity of HSPC has to date remained relatively unexplored in humans13-16. Here we report a comprehensive study of the frequencies, dynamics and output of seven HSPC subtypes in humans that was performed by tracking 148,093 individual clones in six patients treated with lentiviral gene therapy using autologous HSPC transplantation and followed for up to 5 years. We discovered that primitive multipotent progenitor and hematopoietic stem cell (HSC) populations have distinct roles during the initial reconstitution after transplant, compared with subsequent steady-state phases. Furthermore, we showed that a fraction of in vitro-activated HSC are resilient and undergo a defined delayed activation period upon transplant. Finally, our data support the concept that early lymphoid-biased progenitors might be capable of long-term survival, such that they can be maintained independently of their continuous production from HSC. Overall, this study provides comprehensive data on HSPC dynamics after autologous transplantation and gene therapy in humans.


Assuntos
Engenharia Genética , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células Sanguíneas/citologia , Células Sanguíneas/transplante , Linhagem da Célula/genética , Vetores Genéticos/uso terapêutico , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Células-Tronco/citologia , Transplante Autólogo/efeitos adversos
16.
Cell Stem Cell ; 19(1): 107-19, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27237736

RESUMO

Hematopoietic stem/progenitor cells (HSPCs) are capable of supporting the lifelong production of blood cells exerting a wide spectrum of functions. Lentiviral vector HSPC gene therapy generates a human hematopoietic system stably marked at the clonal level by vector integration sites (ISs). Using IS analysis, we longitudinally tracked >89,000 clones from 15 distinct bone marrow and peripheral blood lineages purified up to 4 years after transplant in four Wiskott-Aldrich syndrome patients treated with HSPC gene therapy. We measured at the clonal level repopulating waves, populations' sizes and dynamics, activity of distinct HSPC subtypes, contribution of various progenitor classes during the early and late post-transplant phases, and hierarchical relationships among lineages. We discovered that in-vitro-manipulated HSPCs retain the ability to return to latency after transplant and can be physiologically reactivated, sustaining a stable hematopoietic output. This study constitutes in vivo comprehensive tracking in humans of hematopoietic clonal dynamics during the early and late post-transplant phases.


Assuntos
Rastreamento de Células , Hematopoese , Antígenos CD34/metabolismo , Engenharia Celular , Linhagem da Célula/genética , Pré-Escolar , Células Clonais , Terapia Genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lactente , Masculino , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mutagênese Insercional/genética , Fatores de Tempo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia
17.
BMC Bioinformatics ; 17(Suppl 11): 320, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28185547

RESUMO

BACKGROUND: In biomedical research a relevant issue is to identify time intervals or portions of a n-dimensional support where a particular event of interest is more likely to occur than expected. Algorithms that require to specify a-priori number/dimension/length of clusters assumed for the data suffer from a high degree of arbitrariness whenever no precise information are available, and this may strongly affect final estimation on parameters. Within this framework, spatial scan-statistics have been proposed in the literature, representing a valid non-parametric alternative. RESULTS: We adapt the so called Bernoulli-model scan statistic to the genomic field and we propose a multivariate extension, named Relative Scan Statistics, for the comparison of two series of Bernoulli r.v. defined over a common support, with the final goal of highlighting unshared event rate variations. Using a probabilistic approach based on success probability estimates and comparison (likelihood based), we can exploit an hypothesis testing procedure to identify clusters and relative clusters. Both the univariate and the novel multivariate extension of the scan statistic confirm previously published findings. CONCLUSION: The method described in the paper represents a challenging application of scan statistics framework to problem related to genomic data. From a biological perspective, these tools offer the possibility to clinicians and researcher to improve their knowledge on viral vectors integrations process, allowing to focus their attention to restricted over-targeted portion of the genome.


Assuntos
Algoritmos , Genômica/métodos , HIV/genética , Vírus da Leucemia Murina/genética , Proteínas Virais/genética , Análise por Conglomerados , Interpretação Estatística de Dados , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Humanos , Funções Verossimilhança , Integração Viral
18.
Nat Commun ; 6: 6483, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25744187

RESUMO

The molecular mechanisms that allow HIV to integrate into particular sites of the host genome are poorly understood. Here we tested if the nuclear pore complex (NPC) facilitates the targeting of HIV integration by acting on chromatin topology. We show that the integrity of the nuclear side of the NPC, which is mainly composed of Tpr, is not required for HIV nuclear import, but that Nup153 is essential. Depletion of Tpr markedly reduces HIV infectivity, but not the level of integration. HIV integration sites in Tpr-depleted cells are less associated with marks of active genes, consistent with the state of chromatin proximal to the NPC, as analysed by super-resolution microscopy. LEDGF/p75, which promotes viral integration into active genes, stabilizes Tpr at the nuclear periphery and vice versa. Our data support a model in which HIV nuclear import and integration are concerted steps, and where Tpr maintains a chromatin environment favourable for HIV replication.


Assuntos
Cromatina/metabolismo , HIV-1/fisiologia , Poro Nuclear/metabolismo , Integração Viral/fisiologia , Replicação Viral/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Western Blotting , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Luciferases , Microscopia Confocal , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Oligonucleotídeos/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo
19.
PLoS One ; 9(3): e89614, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603807

RESUMO

Cystic fibrosis (CF) airways disease represents an example of polymicrobial infection whereby different bacterial species can interact and influence each other. In CF patients Staphylococcus aureus is often the initial pathogen colonizing the lungs during childhood, while Pseudomonas aeruginosa is the predominant pathogen isolated in adolescents and adults. During chronic infection, P. aeruginosa undergoes adaptation to cope with antimicrobial therapy, host response and co-infecting pathogens. However, S. aureus and P. aeruginosa often co-exist in the same niche influencing the CF pathogenesis. The goal of this study was to investigate the reciprocal interaction of P. aeruginosa and S. aureus and understand the influence of P. aeruginosa adaptation to the CF lung in order to gain important insight on the interplay occurring between the two main pathogens of CF airways, which is still largely unknown. P. aeruginosa reference strains and eight lineages of clinical strains, including early and late clonal isolates from different patients with CF, were tested for growth inhibition of S. aureus. Next, P. aeruginosa/S. aureus competition was investigated in planktonic co-culture, biofilm, and mouse pneumonia model. P. aeruginosa reference and early strains, isolated at the onset of chronic infection, outcompeted S. aureus in vitro and in vivo models of co-infection. On the contrary, our results indicated a reduced capacity to outcompete S. aureus of P. aeruginosa patho-adaptive strains, isolated after several years of chronic infection and carrying several phenotypic changes temporally associated with CF lung adaptation. Our findings provide relevant information with respect to interspecies interaction and disease progression in CF.


Assuntos
Fibrose Cística/microbiologia , Pseudomonas aeruginosa/fisiologia , Sistema Respiratório/microbiologia , Staphylococcus aureus/fisiologia , Adaptação Fisiológica , Animais , Antibiose/fisiologia , Técnicas Bacteriológicas , Biofilmes , Coinfecção/microbiologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/classificação , Sistema Respiratório/patologia , Especificidade da Espécie , Staphylococcus aureus/classificação , Staphylococcus aureus/patogenicidade , Virulência
20.
Science ; 341(6148): 1233151, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23845947

RESUMO

Wiskott-Aldrich syndrome (WAS) is an inherited immunodeficiency caused by mutations in the gene encoding WASP, a protein regulating the cytoskeleton. Hematopoietic stem/progenitor cell (HSPC) transplants can be curative, but, when matched donors are unavailable, infusion of autologous HSPCs modified ex vivo by gene therapy is an alternative approach. We used a lentiviral vector encoding functional WASP to genetically correct HSPCs from three WAS patients and reinfused the cells after a reduced-intensity conditioning regimen. All three patients showed stable engraftment of WASP-expressing cells and improvements in platelet counts, immune functions, and clinical scores. Vector integration analyses revealed highly polyclonal and multilineage haematopoiesis resulting from the gene-corrected HSPCs. Lentiviral gene therapy did not induce selection of integrations near oncogenes, and no aberrant clonal expansion was observed after 20 to 32 months. Although extended clinical observation is required to establish long-term safety, lentiviral gene therapy represents a promising treatment for WAS.


Assuntos
Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Criança , Vetores Genéticos , Humanos , Lentivirus , Masculino , Transdução Genética , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA