RESUMO
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social interaction and communication, as well as restrained or stereotyped behaviors. The inherent heterogeneity within the autism spectrum poses challenges for developing effective pharmacological treatments targeting core features. Successful clinical trials require the identification of robust markers to enable patient stratification. In this study, we identified molecular markers within the oxytocin and immediate early gene families across five interconnected brain structures of the social circuit. We used wild-type and four heterogeneous mouse models, each exhibiting unique autism-like behaviors modeling the autism spectrum. While dysregulations in the oxytocin family were model-specific, immediate early genes displayed widespread alterations, reflecting global changes across the four models. Through integrative analysis, we identified Egr1, Foxp1, Homer1a, Oxt, and Oxtr as five robust and discriminant molecular markers that allowed the successful stratification of the four models. Importantly, our stratification demonstrated predictive values when challenged with a fifth mouse model or identifying subgroups of mice potentially responsive to oxytocin treatment. Beyond providing insights into oxytocin and immediate early gene mRNA dynamics, this proof-of-concept study represents a significant step toward the potential stratification of individuals with ASD. This work has implications for the success of clinical trials and the development of personalized medicine in autism.
Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Ocitocina , Receptores de Ocitocina , Animais , Camundongos , Ocitocina/genética , Transtorno do Espectro Autista/genética , Receptores de Ocitocina/genética , Masculino , Camundongos Endogâmicos C57BL , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Encéfalo/metabolismo , Comportamento Animal , Fatores de Transcrição Forkhead/genética , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Transtorno Autístico/genéticaRESUMO
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders whose diagnosis relies on deficient social interaction and communication together with repetitive behaviours. Multiple studies have highlighted the potential of oxytocin (OT) to ameliorate behavioural abnormalities in animal models and subjects with ASD. Clinical trials, however, yielded disappointing results. Our study aimed at assessing the behavioural effects of different regimens of OT administration in the Oprm1 null mouse model of ASD. We assessed the effects of intranasal OT injected once at different doses (0.15, 0.3, and 0.6 IU) and time points (5, 15, and 30 min) following administration, or chronically, on ASD-related behaviours (social interaction and preference, stereotypies, anxiety, nociception) in Oprm1+/+ and Oprm1-/- mice. We then tested whether pairing intranasal OT injection with social experience would influence its outcome on ASD-like symptoms, and measured gene expression in the reward/social circuit. Acute intranasal OT at 0.3 IU improved social behaviour in Oprm1-/- mice 5 min after administration, with limited effects on non-social behaviours. Chronic (8-17 days) OT maintained rescuing effects in Oprm1 null mice but was deleterious in wild-type mice. Finally, improvements in the social behaviour of Oprm1-/- mice were greater and longer lasting when OT was administered in a social context. Under these conditions, the expression of OT and vasopressin receptor genes, as well as marker genes of striatal projection neurons, was suppressed. We detected no sex difference in OT effects. Our results highlight the importance of considering dosage and social context when evaluating the effects of OT treatment in ASD.
Assuntos
Administração Intranasal , Modelos Animais de Doenças , Camundongos Knockout , Ocitocina , Receptores Opioides mu , Comportamento Social , Animais , Ocitocina/administração & dosagem , Ocitocina/farmacologia , Receptores Opioides mu/genética , Receptores Opioides mu/deficiência , Masculino , Camundongos , Feminino , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Camundongos Endogâmicos C57BLRESUMO
Rodents, along with numerous other mammals, heavily depend on olfactory cues to navigate their social interactions. Processing of olfactory sensory inputs is mediated by conserved brain circuits that ultimately trigger social behaviors, such as social interactions and parental care. Although innate, parenting is influenced by internal states, social experience, genetics, and the environment, and any significant disruption of these factors can impact the social circuits. Here, we review the molecular mechanisms and social circuits from the olfactory epithelium to central processing that initiate parental behaviors and their dysregulations that may contribute to the social impairments in mouse models of autism spectrum disorders (ASD). We discuss recent advances of the crucial role of olfaction in parental care, its consequences for social interactions, and the reciprocal influence on social interaction impairments in mouse models of ASD.
Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Olfato , Animais , Transtorno do Espectro Autista/fisiopatologia , Camundongos , Olfato/fisiologia , Humanos , Poder Familiar/psicologia , Comportamento Social , Condutos Olfatórios/fisiopatologiaRESUMO
CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.
Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Retinose Pigmentar , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Mutação , Organoides/metabolismo , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismoRESUMO
Autism spectrum disorders (ASDs) are diagnosed in 1/100 children worldwide, based on two core symptoms: deficits in social interaction and communication, and stereotyped behaviours. G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors that transduce extracellular signals to convergent intracellular signalling and downstream cellular responses that are commonly dysregulated in ASD. Despite hundreds of GPCRs being expressed in the brain, only 23 are genetically associated with ASD according to the Simons Foundation Autism Research Initiative (SFARI) gene database: oxytocin OTR; vasopressin V1A and V1B ; metabotropic glutamate mGlu5 and mGlu7 ; GABAB2 ; dopamine D1 , D2 and D3 ; serotoninergic 5-HT1B ; ß2 -adrenoceptor; cholinergic M3 ; adenosine A2A and A3 ; angiotensin AT2 ; cannabinoid CB1 ; chemokine CX3 CR1; orphan GPR37 and GPR85; and olfactory OR1C1, OR2M4, OR2T10 and OR52M1. Here, we review the therapeutic potential of these 23 GPCRs, as well as 5-HT2A and 5-HT7 , for ASD. For each GPCR, we discuss its genetic association, genetic and pharmacological manipulation in animal models, pharmacopoeia for core symptoms of ASD and rank them based on these factors. Among these GPCRs, we highlight D2 , 5-HT2A , CB1 , OTR and V1A as the more promising targets for ASD. We discuss that the dysregulation of GPCRs and their signalling is a convergent pathological mechanism of ASD. Their therapeutic potential has only begun as multiple GPCRs could mitigate ASD.
RESUMO
Follicle-stimulating hormone receptor (FSHR) plays a key role in reproduction through the activation of multiple signaling pathways. Low molecular weight (LMW) ligands composed of biased agonist properties are highly valuable tools to decipher complex signaling mechanisms as they allow selective activation of discrete signaling cascades. However, available LMW FSHR ligands have not been fully characterized yet. In this context, we explored the pharmacological diversity of three benzamide and two thiazolidinone derivatives compared to FSH. Concentration/activity curves were generated for Gαs, Gαq, Gαi, ß-arrestin 2 recruitment, and cAMP production, using BRET assays in living cells. ERK phosphorylation was analyzed by Western blotting, and CRE-dependent transcription was assessed using a luciferase reporter assay. All assays were done in either wild-type, Gαs or ß-arrestin 1/2 CRISPR knockout HEK293 cells. Bias factors were calculated for each pair of read-outs by using the operational model. Our results show that each ligand presented a discrete pharmacological efficacy compared to FSH, ranging from super-agonist for ß-arrestin 2 recruitment to pure Gαs bias. Interestingly, LMW ligands generated kinetic profiles distinct from FSH (i.e., faster, slower or transient, depending on the ligand) and correlated with CRE-dependent transcription. In addition, clear system biases were observed in cells depleted of either Gαs or ß-arrestin genes. Such LMW properties are useful pharmacological tools to better dissect the multiple signaling pathways activated by FSHR and assess their relative contributions at the cellular and physio-pathological levels.
Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/farmacologia , Receptores do FSH/agonistas , beta-Arrestina 2/farmacologia , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , CinéticaRESUMO
Understanding the neurobiological underpinnings of abstinence from drugs of abuse is critical to allow better recovery and ensure relapse prevention in addicted subjects. By comparing the long-term transcriptional consequences of morphine and cocaine exposure, we identified the metabotropic glutamate receptor subtype 4 (mGluR4) as a promising pharmacological target in morphine abstinence. We evaluated the behavioral and molecular effects of facilitating mGluR4 activity in abstinent mice. Transcriptional regulation of marker genes of medium spiny neurons (MSNs) allowed best discriminating between 4-week morphine and cocaine abstinence in the nucleus accumbens (NAc). Among these markers, Grm4, encoding mGluR4, displayed down-regulated expression in the caudate putamen and NAc of morphine, but not cocaine, abstinent mice. Chronic administration of the mGluR4 positive allosteric modulator (PAM) VU0155041 (2.5 and 5 mg/kg) rescued social behavior, normalized stereotypies and anxiety and blunted locomotor sensitization in morphine abstinent mice. This treatment improved social preference but increased stereotypies in cocaine abstinent mice. Finally, the beneficial behavioral effects of VU0155041 treatment in morphine abstinent mice were correlated with restored expression of key MSN and neural activity marker genes in the NAc. This study reports that chronic administration of the mGluR4 PAM VU0155041 relieves long-term deleterious consequences of morphine exposure. It illustrates the neurobiological differences between opiate and psychostimulant abstinence and points to pharmacological repression of excessive activity of D2-MSNs in the NAc as a promising therapeutic lever in drug addiction.
Assuntos
Cocaína , Receptores de Glutamato Metabotrópico , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Núcleo AccumbensRESUMO
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are inherited degenerative retinal dystrophies with vision loss that ultimately lead to blindness. Several genes have been shown to be involved in early onset retinal dystrophies, including CRB1 and RPE65. Gene therapy recently became available for young RP patients with variations in the RPE65 gene. Current research programs test adeno-associated viral gene augmentation or editing therapy vectors on various disease models mimicking the disease in patients. These include several animal and emerging human-derived models, such as human-induced pluripotent stem cell (hiPSC)-derived retinal organoids or hiPSC-derived retinal pigment epithelium (RPE), and human donor retinal explants. Variations in the CRB1 gene are a major cause for early onset autosomal recessive RP with patients suffering from visual impairment before their adolescence and for LCA with newborns experiencing severe visual impairment within the first months of life. These patients cannot benefit yet from an available gene therapy treatment. In this review, we will discuss the recent advances, advantages and disadvantages of different CRB1 human and animal retinal degeneration models. In addition, we will describe novel therapeutic tools that have been developed, which could potentially be used for retinal gene augmentation therapy for RP patients with variations in the CRB1 gene.
RESUMO
GPR88 is an orphan G protein-coupled receptor (GPCR) considered as a promising therapeutic target for neuropsychiatric disorders; its pharmacology, however, remains scarcely understood. Based on our previous report of increased delta opioid receptor activity in Gpr88 null mice, we investigated the impact of GPR88 co-expression on the signaling of opioid receptors in vitro and revealed that GPR88 inhibits the activation of both their G protein- and ß-arrestin-dependent signaling pathways. In Gpr88 knockout mice, morphine-induced locomotor sensitization, withdrawal and supra-spinal analgesia were facilitated, consistent with a tonic inhibitory action of GPR88 on µOR signaling. We then explored GPR88 interactions with more striatal versus non-neuronal GPCRs, and revealed that GPR88 can decrease the G protein-dependent signaling of most receptors in close proximity, but impedes ß-arrestin recruitment by all receptors tested. Our study unravels an unsuspected buffering role of GPR88 expression on GPCR signaling, with intriguing consequences for opioid and striatal functions.
Assuntos
Corpo Estriado/metabolismo , Receptores Acoplados a Proteínas G , Receptores Opioides/metabolismo , Transdução de Sinais/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/genética , beta-Arrestinas/metabolismoRESUMO
Knowledge on G protein-coupled receptor (GPCRs) structure and mechanism of activation has profoundly evolved over the past years. The way drugs targeting this family of receptors are discovered and used has also changed. Ligands appear to bind a growing number of GPCRs in a competitive or allosteric manner to elicit balanced signaling or biased signaling (i.e., differential efficacy in activating or inhibiting selective signaling pathway(s) compared to the reference ligand). These novel concepts and developments transform our understanding of the follicle-stimulating hormone (FSH) receptor (FSHR) biology and the way it could be pharmacologically modulated in the future. The FSHR is expressed in somatic cells of the gonads and plays a major role in reproduction. When compared to classical GPCRs, the FSHR exhibits intrinsic peculiarities, such as a very large NH2-terminal extracellular domain that binds a naturally heterogeneous, large heterodimeric glycoprotein, namely FSH. Once activated, the FSHR couples to Gαs and, in some instances, to other Gα subunits. G protein-coupled receptor kinases and ß-arrestins are also recruited to this receptor and account for its desensitization, trafficking, and intracellular signaling. Different classes of pharmacological tools capable of biasing FSHR signaling have been reported and open promising prospects both in basic research and for therapeutic applications. Here we provide an updated review of the most salient peculiarities of FSHR signaling and its selective modulation.
RESUMO
Oxytocin (OT) and its receptor (OT-R) are implicated in the etiology of autism spectrum disorders (ASD), and OT-R is a potential target for therapeutic intervention. Very few nonpeptide oxytocin agonists have currently been reported. Their molecular and in vivo pharmacology remain to be clarified, and none of them has been shown to be efficient in improving social interaction in animal models relevant to ASD. In an attempt to rationalize the design of centrally active nonpeptide full agonists, we studied in a systematic way the structural determinants of the affinity and efficacy of representative ligands of the V1a and V2 vasopressin receptor subtypes (V1a-R and V2-R) and of the oxytocin receptor. Our results confirm the subtlety of the structure-affinity and structure-efficacy relationships around vasopressin/oxytocin receptor ligands and lead however to the first nonpeptide OT receptor agonist active in a mouse model of ASD after peripheral ip administration.
Assuntos
Transtorno Autístico/tratamento farmacológico , Modelos Animais de Doenças , Relações Interpessoais , Psicotrópicos/farmacologia , Pirazóis/farmacologia , Pirrolidinas/farmacologia , Receptores Opioides mu/fisiologia , Receptores de Ocitocina/administração & dosagem , Receptores de Ocitocina/agonistas , Animais , Transtorno Autístico/psicologia , Barreira Hematoencefálica/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos , Camundongos Knockout , Psicotrópicos/química , Pirazóis/uso terapêutico , Pirrolidinas/uso terapêutico , Receptores de Ocitocina/uso terapêutico , Relação Estrutura-AtividadeRESUMO
The mu opioid receptor (MOR) plays a critical role in modulating social behavior in humans and animals. Accordingly, MOR null mice display severe alterations in their social repertoire as well as multiple other behavioral deficits, recapitulating core and secondary symptoms of autism spectrum disorder (ASD). Such behavioral profile suggests that MOR dysfunction, and beyond this, altered reward processes may contribute to ASD etiopathology. Interestingly, the only treatments that proved efficacy in relieving core symptoms of ASD, early behavioral intervention programs, rely principally on positive reinforcement to ameliorate behavior. The neurobiological underpinnings of their beneficial effects, however, remain poorly understood. Here we back-translated applied behavior analysis (ABA)-based behavioral interventions to mice lacking the MOR (Oprm1-/-), as a model of autism with blunted reward processing. By associating a positive reinforcement, palatable food reward, to daily encounter with a wild-type congener, we were able to rescue durably social interaction and preference in Oprm1-/- mice. Along with behavioral improvements, the expression of marker genes of neuronal activity and plasticity as well as genes of the oxytocin/vasopressin system were remarkably normalized in the reward/social circuitry. Our study provides further evidence for a critical involvement of reward processes in driving social behavior and opens new perspectives regarding therapeutic intervention in ASD.
Assuntos
Transtorno do Espectro Autista/terapia , Terapia Comportamental , Comportamento Animal , Receptores Opioides mu/genética , Recompensa , Comportamento Social , Animais , Análise do Comportamento Aplicada , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genéticaRESUMO
G protein-coupled receptors (GPCRs) exert their physiological function by transducing a complex signaling network that coordinates gene expression and dictates the phenotype of highly differentiated cells. Much is known about the gene networks they transcriptionally regulate upon ligand exposure in a process that takes hours before a new protein is synthesized. However, far less is known about GPCR impact on the translational machinery and subsequent mRNA translation, although this gene regulation level alters the cell phenotype in a strikingly different timescale. In fact, mRNA translation is an early response kinetically connected to signaling events, hence it leads to the synthesis of a new protein within minutes following receptor activation. By these means, mRNA translation is responsive to subtle variations of the extracellular environment. In addition, when restricted to cell subcellular compartments, local mRNA translation contributes to cell micro-specialization, as observed in synaptic plasticity or in cell migration. The mechanisms that control where in the cell an mRNA is translated are starting to be deciphered. But how an extracellular signal triggers such local translation still deserves extensive investigations. With the advent of high-throughput data acquisition, it now becomes possible to review the current knowledge on the translatome that some GPCRs regulate, and how this information can be used to explore GPCR-controlled local translation of mRNAs.
RESUMO
This protocol details on a screening method for infectivity and tropism of different serotypes of adeno-associated viruses (AAVs) on human retinal explants with cell-type specific or ubiquitous green fluorescent protein (GFP) expression vectors. Eyes from deceased adult human donors are enucleated and the retinas are isolated. Each retina is punched into eight to ten 6-mm equal pieces. Whatman™ paper punches are placed on the retinas and the stack is transferred onto 24-well culture inserts with the photoreceptors facing the membrane. AAVs are applied on the retinal explant punches to allow transduction for 48 h. Retinas are nourished by a serum-free Neurobasal®-A based medium composition that allows extended culturing of explants containing photoreceptor inner and outer segments. The protocols include quality control measurements and histological staining for retina cells. The cost and time effective procedure permits AAV transgene expression assays, RNAi knockdown, and pharmacological intervention on human retinas for 21 days ex vivo.
Assuntos
Dependovirus/genética , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Injeções Intraoculares/métodos , Técnicas de Cultura de Órgãos/métodos , Retina/metabolismo , Transdução Genética , Dependovirus/imunologia , Humanos , Células Fotorreceptoras/metabolismo , Sorogrupo , TransgenesRESUMO
The endogenous opioid system is well known to relieve pain and underpin the rewarding properties of most drugs of abuse. Among opioid receptors, the µ receptor mediates most of the analgesic and rewarding properties of opioids. Based on striking similarities between social distress, physical pain and opiate withdrawal, µ receptors have been proposed to play a critical role in modulating social behaviour in humans and animals. This review summarizes experimental data demonstrating such role and proposes a novel model, the µ opioid receptor balance model, to account for the contribution of µ receptors to the subtle regulation of social behaviour. Interestingly, µ receptor null mice show behavioural deficits similar to those observed in patients with autism spectrum disorder (ASD), including severe impairment in social interactions. Therefore, after a brief summary of recent evidence for blunted (social) reward processes in subjects with ASD, we review here arguments for altered µ receptor function in this pathology. This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Assuntos
Transtorno do Espectro Autista/metabolismo , Receptores Opioides mu/metabolismo , Recompensa , Comportamento Social , Animais , Humanos , Receptores Opioides mu/genéticaRESUMO
Once considered science fiction, gene therapy is rapidly becoming scientific reality, targeting a growing number of the approximately 250 genes linked to hereditary retinal disorders such as retinitis pigmentosa and Leber's congenital amaurosis. Powerful new technologies have emerged, leading to the development of humanized models for testing and screening these therapies, bringing us closer to the goal of personalized medicine. These tools include the ability to differentiate human induced pluripotent stem cells (iPSCs) to create a "retina-in-a-dish" model and the self-formed ectodermal autonomous multi-zone, which can mimic whole eye development. In addition, highly specific gene-editing tools are now available, including the CRISPR/Cas9 system and the recently developed homology-independent targeted integration approach, which allows gene editing in non-dividing cells. Variants in the CRB1 gene have long been associated with retinopathies, and more recently the CRB2 gene has also been shown to have possible clinical relevance with respect to retinopathies. In this review, we discuss the role of the CRB protein complex in patients with retinopathy. In addition, we discuss new opportunities provided by stem cells and gene-editing tools, and we provide insight into how the retinal therapeutic pipeline can be improved. Finally, we discuss the current state of adeno-associated virus-mediated gene therapy and how it can be applied to treat retinopathies associated with mutations in CRB1.
RESUMO
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by ß-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way ß-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to ß-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding ß-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Assuntos
Hormônios/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Animais , Endocitose/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , HumanosRESUMO
BACKGROUND: GPR88 is an orphan G protein coupled receptor highly enriched in the striatum, and previous studies have focused on GPR88 function in striatal physiology. The receptor is also expressed in other brain areas, and here we examined whether GPR88 function extends beyond striatal-mediated responses. METHODS: We created Gpr88 knockout mice and examined both striatal and extrastriatal regions at molecular and cellular levels. We also tested striatum-, hippocampus-, and amygdala-dependent behaviors in Gpr88(-/-) mice using extensive behavioral testing. RESULTS: We found increased G protein coupling for delta opioid receptor (DOR) and mu opioid, but not other Gi/o coupled receptors, in the striatum of Gpr88 knockout mice. We also found modifications in gene transcription, dopamine and serotonin contents, and dendritic morphology inside and outside the striatum. Behavioral testing confirmed striatal deficits (hyperactivity, stereotypies, motor impairment in rotarod). In addition, mutant mice performed better in spatial tasks dependent on hippocampus (Y-maze, novel object recognition, dual solution cross-maze) and also showed markedly reduced levels of anxiety (elevated plus maze, marble burying, novelty suppressed feeding). Strikingly, chronic blockade of DOR using naltrindole partially improved motor coordination and normalized spatial navigation and anxiety of Gpr88(-/-) mice. CONCLUSIONS: We demonstrate that GPR88 is implicated in a large repertoire of behavioral responses that engage motor activity, spatial learning, and emotional processing. Our data also reveal functional antagonism between GPR88 and DOR activities in vivo. The therapeutic potential of GPR88 therefore extends to cognitive and anxiety disorders, possibly in interaction with other receptor systems.
Assuntos
Ansiedade/metabolismo , Transtornos dos Movimentos/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Aprendizagem Espacial/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/patologia , Dopamina/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/patologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Serotonina/metabolismo , Aprendizagem Espacial/efeitos dos fármacosRESUMO
Mutations in the Crumbs-homologue-1 (CRB1) gene lead to severe recessive inherited retinal dystrophies. Gene transfer therapy is the most promising cure for retinal dystrophies and has primarily been applied for recessive null conditions via a viral gene expression vector transferring a cDNA encoding an enzyme or channel protein, and targeting expression to one cell type. Therapy for the human CRB1 disease will be more complex, as CRB1 is a structural and signaling transmembrane protein present in three cell classes: Müller glia, cone and rod photoreceptors. In this study, we applied CRB1 and CRB2 gene therapy vectors in Crb1-retinitis pigmentosa mouse models at mid-stage disease. We tested if CRB expression restricted to Müller glial cells or photoreceptors or co-expression in both is required to recover retinal function. We show that targeting both Müller glial cells and photoreceptors with CRB2 ameliorated retinal function and structure in Crb1 mouse models. Surprisingly, targeting a single cell type or all cell types with CRB1 reduced retinal function. We show here the first pre-clinical studies for CRB1-related eye disorders using CRB2 vectors and initial elucidation of the cellular mechanisms underlying CRB1 function.
Assuntos
Células Ependimogliais/fisiologia , Proteínas do Tecido Nervoso/genética , Retinose Pigmentar/genética , Animais , Proteínas de Transporte/genética , Modelos Animais de Doenças , Terapia Genética , Células HEK293 , Humanos , Injeções Intravítreas , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Retina/patologia , Retina/fisiopatologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/terapiaRESUMO
Mutations in the CRB1 gene lead to retinal dystrophies ranging from Leber congenital amaurosis (LCA) to early-onset retinitis pigmentosa (RP), due to developmental defects or loss of adhesion between photoreceptors and Müller glia cells, respectively. Whereas over 150 mutations have been found, no clear genotype-phenotype correlation has been established. Mouse Crb1 knockout retinas show a mild phenotype limited to the inferior quadrant, whereas Crb2 knockout retinas display a severe degeneration throughout the retina mimicking the phenotype observed in RP patients associated with CRB1 mutations. Crb1Crb2 double mutant retinas have severe developmental defects similar to the phenotype observed in LCA patients associated with CRB1 mutations. Therefore, CRB2 is a candidate modifying gene of human CRB1-related retinal dystrophy. In this study, we studied the cellular localization of CRB1 and CRB2 in human retina and tested the influence of the Crb2 gene allele on Crb1-retinal dystrophies in mice. We found that in contrast to mice, in the human retina CRB1 protein was expressed at the subapical region in photoreceptors and Müller glia cells, and CRB2 only in Müller glia cells. Genetic ablation of one allele of Crb2 in heterozygote Crb1(+/-) retinas induced a mild retinal phenotype, but in homozygote Crb1 knockout mice lead to an early and severe phenotype limited to the entire inferior retina. Our data provide mechanistic insight for CRB1-related LCA and RP.