RESUMO
Objective.Single-photon emission computed tomography (SPECT) with pinhole collimators can provide high-resolution imaging, but is often limited by low sensitivity. Acquiring projections simultaneously through multiple pinholes affords both high resolution and high sensitivity. However, the overlap of projections from different pinholes on detectors, known as multiplexing, has been shown to cause artefacts which degrade reconstructed images.Approach.Multiplexed projection sets were considered here using an analytic simulation model of AdaptiSPECT-C-a brain-dedicated multi-pinhole SPECT system. AdaptiSPECT-C has fully adaptable aperture shutters, so can acquire projections with a combination of multiplexed and non-multiplexed frames using temporal shuttering. Two strategies for reducing multiplex artefacts were considered: an algorithm to de-multiplex projections, and an alternating reconstruction strategy for projections acquired with a combination of multiplexed and non-multiplexed frames. Geometric and anthropomorphic digital phantoms were used to assess a number of metrics.Main results.Both de-multiplexing strategies showed a significant reduction in image artefacts and improved fidelity, image uniformity, contrast recovery and activity recovery (AR). In all cases, the two de-multiplexing strategies resulted in superior metrics to those from images acquired with only mux-free frames. The de-multiplexing algorithm provided reduced image noise and superior uniformity, whereas the alternating strategy improved contrast and AR.Significance.The use of these de-multiplexing algorithms means that multi-pinhole SPECT systems can acquire projections with more multiplexing without degradation of images.
Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Fatores de Tempo , Humanos , AlgoritmosRESUMO
BACKGROUND: Monte Carlo (MC) simulations are used in nuclear medicine imaging as they provide unparalleled insight into processes that are not directly experimentally measurable, such as scatter and attenuation in an acquisition. Whilst MC is often used to provide a 'ground-truth', this is only the case if the simulation is fully validated against experimental data. This work presents a quantitative validation for a MC simulation of a single-photon emission computed tomography (SPECT) system. METHODS: An MC simulation model of the Mediso AnyScan SCP SPECT system installed at the UK National Physical Laboratory was developed in the GATE (Geant4 Application for Tomographic Emission) toolkit. Components of the detector head and two collimator configurations were modelled according to technical specifications and physical measurements. Experimental detection efficiency measurements were collected for a range of energies, permitting an energy-dependent intrinsic camera efficiency correction function to be determined and applied to the simulation on an event-by-event basis. Experimental data were collected in a range of geometries with [Formula: see text]Tc for comparison to simulation. The procedure was then repeated with [Formula: see text]Lu to determine how the validation extended to another isotope and set of collimators. RESULTS: The simulation's spatial resolution, sensitivity, energy spectra and the projection images were compared with experimental measurements. The simulation and experimental uncertainties were determined and propagated to all calculations, permitting the quantitative agreement between simulated and experimental SPECT acquisitions to be determined. Statistical agreement was seen in sinograms and projection images of both [Formula: see text]Tc and [Formula: see text]Lu data. Average simulated and experimental sensitivity ratios of ([Formula: see text]) were seen for emission and scatter windows of [Formula: see text]Tc, and ([Formula: see text]) and ([Formula: see text]) for the 113 and 208 keV emissions of [Formula: see text]Lu, respectively. CONCLUSIONS: MC simulations will always be an approximation of a physical system and the level of agreement should be assessed. A validation method is presented to quantify the level of agreement between a simulation model and a physical SPECT system.
RESUMO
Accurate image quantification requires accurate calibration of the detector and is vital if dosimetry is to be performed in molecular radiotherapy. A dependence on the position of calibration has been observed in single photon emission computed tomography images when attenuation correction (AC) and scatter correction are applied. This work investigates the origin of this dependence in single photon emission computed tomography scans of phantom inserts filled with Lu solution. A 113 ml sphere and inserts representing a mathematical model of a spleen and an anatomical model of a patient spleen were imaged at the centre and edge of elliptical phantoms. For these inserts, the difference in calibration factor between the positions was around 10% for images reconstructed with AC and triple energy window scatter correction. A combination of experimental imaging and Monte Carlo simulation was used to isolate possible causes due to imaging or reconstruction in turn. Inconsistent application of AC between different reconstruction systems was identified as the origin of the positional dependence.