Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Mediterr J Hematol Infect Dis ; 16(1): e2024062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984097

RESUMO

Multiple myeloma (MM) is a disorder of the monoclonal plasma cells and is the second most common hematologic malignancy. MM initiation and progression are dependent upon complex genomic abnormalities. The current pathogenic model of MM includes two types of primary events, represented by chromosome translocations or chromosome number alterations resulting in hyperdiploidy. These primary molecular events are observed both in MM and in monoclonal gammopathy, its premalignant precursor. Subsequent genetic events allow the progression of monoclonal gammopathy to MM and, together with primary events, contribute to the genetic complexity and heterogeneity of MM. Newer therapies have considerably improved patient outcomes; however, MM remains an incurable disease and most patients experience multiple relapses. The dramatic progresses achieved in the analysis of the heterogeneous molecular features of different MM patients allowed a comprehensive molecular classification of MM and the definition of an individualized prognostic model to predict an individual MM patient's response to different therapeutic options. Despite these progresses, prognostic models fail to identify a significant proportion of patients destined to early relapse. Treatment strategies are increasingly. Based on disease biology, trials are enriched for high-risk MMs, whose careful definition and categorization requires DNA sequencing studies.

2.
Adv Exp Med Biol ; 1459: 321-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017850

RESUMO

The transformation of acute promyelocytic leukemia (APL) from the most fatal to the most curable subtype of acute myeloid leukemia (AML), with long-term survival exceeding 90%, has represented one of the most exciting successes in hematology and in oncology. APL is a paradigm for oncoprotein-targeted cure.APL is caused by a 15/17 chromosomal translocation which generates the PML-RARA fusion protein and can be cured by the chemotherapy-free approach based on the combination of two therapies targeting PML-RARA: retinoic acid (RA) and arsenic. PML-RARA is the key driver of APL and acts by deregulating transcriptional control, particularly RAR targets involved in self-renewal or myeloid differentiation, also disrupting PML nuclear bodies. PML-RARA mainly acts as a modulator of the expression of specific target genes: genes whose regulatory elements recruit PML-RARA are not uniformly repressed but also may be upregulated or remain unchanged. RA and arsenic trioxide directly target PML-RARA-mediated transcriptional deregulation and protein stability, removing the differentiation block at promyelocytic stage and inducing clinical remission of APL patients.


Assuntos
Leucemia Promielocítica Aguda , Proteínas de Fusão Oncogênica , Tretinoína , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Tretinoína/uso terapêutico , Tretinoína/farmacologia , Trióxido de Arsênio/uso terapêutico , Trióxido de Arsênio/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Arsenicais/uso terapêutico , Arsenicais/farmacologia , Óxidos/uso terapêutico , Óxidos/farmacologia , Animais
3.
Mediterr J Hematol Infect Dis ; 16(1): e2024045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882451

RESUMO

The treatment outcomes of patients with chronic lymphocytic leukemia (CLL) have considerably improved with the introduction of targeted therapies based on Bruton kinase inhibitors (BTKIs), venetoclax, and anti-CD20 monoclonal antibodies. However, despite these consistent improvements, patients who become resistant to these agents have poor outcomes and need new and more efficacious therapeutic strategies. Among these new treatments, a potentially curative approach consists of the use of chimeric antigen receptor T (CAR-T) cell therapy, which achieved remarkable success in various B-cell malignancies, including B-cell Non-Hodgkin Lymphomas (NHLs) and B-acute lymphoblastic Leukemia (ALL). However, although CAR-T cells were initially used for the treatment of CLL, their efficacy in CLL patients was lower than in other B-cell malignancies. This review analyses possible mechanisms of these failures, highlighting some recent developments that could offer the perspective of the incorporation of CAR-T cells in treatment protocols for relapsed/refractory CLL patients.

4.
Mediterr J Hematol Infect Dis ; 16(1): e2024044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882455

RESUMO

The study of monoclonal serum proteins has led to the generation of two major theories: one proposing that individuals who had monoclonal proteins without any symptoms or evidence of end-organ damage have a benign condition, the other one suggesting that some individuals with asymptomatic monoclonal proteins may progress to multiple myeloma and thus are affected by a monoclonal gammopathy of undetermined significance (MGUS). Longitudinal studies of subjects with MGUS have supported the second theory. Subsequent studies have characterized and defined the existence of another precursor of multiple myeloma, smoldering multiple myeloma (SMM), intermediate between MGUS and multiple myeloma. Primary molecular events, chromosome translocations, and chromosome number alterations resulting in hyperploidy, required for multiple myeloma development, are already observed in myeloma precursors. MGUS and SMM are heterogeneous conditions with the presence of tumors with distinct pathogenic phenotypes and clinical outcomes. The identification of MGUS and SMM patients with a molecularly defined high risk of progression to MM offers the unique opportunity of early intervention with a therapeutic approach on a low tumor burden.

5.
Mediterr J Hematol Infect Dis ; 16(1): e2024031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468828

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of B-cell lymphoid neoplasia and, in some instances, improved disease outcomes. Thus, six FDA-approved commercial CAR-T cell products that target antigens preferentially expressed on malignant B-cells or plasma cells have been introduced in the therapy of B-cell lymphomas, B-ALLs, and multiple myeloma. These therapeutic successes have triggered the application of CAR-T cell therapy to other hematologic tumors, including T-cell malignancies. However, the success of CAR-T cell therapies in T-cell neoplasms was considerably more limited due to the existence of some limiting factors, such as: 1) the sharing of mutual antigens between normal T-cells and CAR-T cells and malignant cells, determining fratricide events and severe T-cell aplasia; 2) the contamination of CAR-T cells used for CAR transduction with malignant T-cells. Allogeneic CAR-T products can avoid tumor contamination but raise other problems related to immunological incompatibility. In spite of these limitations, there has been significant progress in CD7- and CD5-targeted CAR-T cell therapy of T-cell malignancies in the last few years.

6.
Viruses ; 16(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38257782

RESUMO

Coagulation disorders are described in COVID-19 and long COVID patients. In particular, SARS-CoV-2 infection in megakaryocytes, which are precursors of platelets involved in thrombotic events in COVID-19, long COVID and, in rare cases, in vaccinated individuals, requires further investigation, particularly with the emergence of new SARS-CoV-2 variants. CD147, involved in the regulation of inflammation and required to fight virus infection, can facilitate SARS-CoV-2 entry into megakaryocytes. MCT4, a co-binding protein of CD147 and a key player in the glycolytic metabolism, could also play a role in SARS-CoV-2 infection. Here, we investigated the susceptibility of megakaryocytes to SARS-CoV-2 infection via CD147 and MCT4. We performed infection of Dami cells and human CD34+ hematopoietic progenitor cells induced to megakaryocytic differentiation with SARS-CoV-2 pseudovirus in the presence of AC-73 and syrosingopine, respective inhibitors of CD147 and MCT4 and inducers of autophagy, a process essential in megakaryocyte differentiation. Both AC-73 and syrosingopine enhance autophagy during differentiation but only AC-73 enhances megakaryocytic maturation. Importantly, we found that AC-73 or syrosingopine significantly inhibits SARS-CoV-2 infection of megakaryocytes. Altogether, our data indicate AC-73 and syrosingopine as inhibitors of SARS-CoV-2 infection via CD147 and MCT4 that can be used to prevent SARS-CoV-2 binding and entry into megakaryocytes, which are precursors of platelets involved in COVID-19-associated coagulopathy.


Assuntos
Megacariócitos , Fenóis , Reserpina , SARS-CoV-2 , Humanos , COVID-19 , Megacariócitos/virologia , Fenóis/farmacologia , Síndrome de COVID-19 Pós-Aguda , Reserpina/análogos & derivados , Reserpina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
7.
Mediterr J Hematol Infect Dis ; 16(1): e2024010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223477

RESUMO

Treatment of refractory and relapsed (R/R) B acute lymphoblastic leukemia (B-ALL) is an unmet medical need in both children and adults. Studies carried out in the last two decades have shown that autologous T cells engineered to express a chimeric antigen receptor (CAR-T) represent an effective technique for treating these patients. Antigens expressed on B-cells, such as CD19, CD20, and CD22, represent targets suitable for treating patients with R/R B-ALL. CD19 CAR-T cells induce a high rate (80-90%) of complete remissions in both pediatric and adult R/R B-ALL patients. However, despite this impressive rate of responses, about half of responding patients relapse within 1-2 years after CAR-T cell therapy. Allo-HSCT after CAR-T cell therapy might consolidate the therapeutic efficacy of CAR-T and increase long-term outcomes; however, not all the studies that have adopted allo-HSCT as a consolidative treatment strategy have shown a benefit deriving from transplantation. For B-ALL patients who relapse early after allo-HSCT or those with insufficient T-cell numbers for an autologous approach, using T cells from the original stem cell donor offers the opportunity for the successful generation of CAR-T cells and for an effective therapeutic approach. Finally, recent studies have introduced allogeneic CAR-T cells generated from healthy donors or unmatched, which are opportunely manipulated with gene editing to reduce the risk of immunological incompatibility, with promising therapeutic effects.

8.
Mediterr J Hematol Infect Dis ; 16(1): e2024012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223488

RESUMO

Follicular lymphoma is the second most diagnosed lymphoma in Western Europe. Significant advancements have considerably improved the survival of FL patients. However, 10-20% of these patients are refractory to standard treatments, and most of them will relapse. The treatment of follicular lymphoma patients with multiply relapsed or refractory disease represents an area of high-unmet needing new treatments with stronger efficacy. Chimeric antigen receptor (CAR)-T cell therapy targeting B-cell antigens, such as CD19 or CD20, is emerging as an efficacious treatment for R/R follicular lymphoma patients, particularly for those with early relapse and refractory to alkylating agents and to anti-CD20 monoclonal antibodies, resulting in a high rate of durable responses in a high proportion of patients.

9.
Tumori ; 110(2): 88-95, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37772924

RESUMO

Anaplastic Lymphoma Kinase (ALK) is a potent oncogenic driver of lung adenocarcinoma (LUAD). ALK is constitutively activated by gene fusion events between the ALK and other gene fusion partners in about 2-3% of LUADs, characterized by few other gene alterations. ALK-fusions are a druggable target through potent pharmacological inhibitors of tyrosine kinase activity. Thus, several ALK-TKIs (Tyrosine Kinase Inhibitors) of first-, second- and third-generation have been developed that improved the outcomes of ALK-rearranged LUADs when used as first- or second-line agents. However, resistance mechanisms greatly limit the durability of the therapeutic effects elicited by these TKIs. The molecular mechanisms responsible for these resistance mechanisms have been in part elucidated, but overcoming acquired resistance to ALK-derived therapy remains a great challenge. Some new therapeutic strategies under investigation aim to induce long-term remission in ALK-fusion positive LUADs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/genética
10.
Mediterr J Hematol Infect Dis ; 15(1): e2023066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028399

RESUMO

Large B-cell lymphomas (LBCLs) are among the most frequent (about 30%) non-Hodgkin's lymphoma. Despite the aggressive behavior of these lymphomas, more than 60% of patients can be cured with first-line chemoimmunotherapy using the R-CHOP regimen. Patients with refractory or relapsing disease show a poor outcome even when treated with second-line therapies. CD19-targeted chimeric antigen receptor (CAR) T-cells are emerging as an efficacious second-line treatment strategy for patients with LBCL. Three CD19-CAR-T-cell products received FDA and EMA approval. CAR-T cell therapy has also been explored for treating high-risk LBCL patients in the first-line setting and for patients with central nervous system involvement. Although CD19-CAR-T therapy has transformed the care of refractory/relapsed LBCL, about 60% of these patients will ultimately progress or relapse following CD19-CAR-T; therefore, it is fundamental to identify predictive criteria of response to CAR-T therapy and to develop salvage therapies for patients relapsing after CD19-CAR-T therapies. Moreover, ongoing clinical trials evaluate bispecific CAR-T cells targeting both CD19 and CD20 or CD19 and CD22 as a tool to improve the therapeutic efficacy and reduce the number of refractory/relapsing patients.

11.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958646

RESUMO

Citrus fruits are a natural source of ascorbic acid, and exosome-like nanovesicles obtained from these fruits contain measurable levels of ascorbic acid. We tested the ability of grapefruit-derived extracellular vesicles (EVs) to inhibit the growth of human leukemic cells and leukemic patient-derived bone marrow blasts. Transmission electron microscopy and nanoparticle tracking analysis (NTA) showed that the obtained EVs were homogeneous exosomes, defined as exosome-like plant-derived nanovesicles (ELPDNVs). The analysis of their content has shown measurable amounts of several molecules with potent antioxidant activity. ELPDNVs showed a time-dependent antiproliferative effect in both U937 and K562 leukemic cell lines, comparable with the effect of high-dosage ascorbic acid (2 mM). This result was confirmed by a clear decrease in the number of AML blasts induced by ELPDNVs, which did not affect the number of normal cells. ELPDNVs increased the ROS levels in both AML blast cells and U937 without affecting ROS storage in normal cells, and this effect was comparable to ascorbic acid (2 mM). With our study, we propose ELPDNVs from grapefruits as a combination/supporting therapy for human leukemias with the aim to improve the effectiveness of the current therapies.


Assuntos
Citrus paradisi , Exossomos , Leucemia Mieloide Aguda , Humanos , Exossomos/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Agricultura Orgânica , Leucemia Mieloide Aguda/metabolismo
12.
Biomedicines ; 11(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37509445

RESUMO

The current classification of acute myeloid leukemia (AML) relies largely on genomic alterations. AML with mutated nucleophosmin 1 (NPM1-mut) is the largest of the genetically defined groups, involving about 30% of adult AMLs and is currently recognized as a distinct entity in the actual AML classifications. NPM1-mut AML usually occurs in de novo AML and is associated predominantly with a normal karyotype and relatively favorable prognosis. However, NPM1-mut AMLs are genetically, transcriptionally, and phenotypically heterogeneous. Furthermore, NPM1-mut is a clinically heterogenous group. Recent studies have in part clarified the consistent heterogeneities of these AMLs and have strongly supported the need for an additional stratification aiming to improve the therapeutic response of the different subgroups of NPM1-mut AML patients.

13.
Mediterr J Hematol Infect Dis ; 15(1): e2023038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435040

RESUMO

TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) form a distinct and heterogeneous group of myeloid malignancies associated with poor outcomes. Studies carried out in the last years have in part elucidated the complex role played by TP53 mutations in the pathogenesis of these myeloid disorders and in the mechanisms of drug resistance. A consistent number of studies has shown that some molecular parameters, such as the presence of a single or multiple TP53 mutations, the presence of concomitant TP53 deletions, the association with co-occurring mutations, the clonal size of TP53 mutations, the involvement of a single (monoallelic) or of both TP53 alleles (biallelic) and the cytogenetic architecture of concomitant chromosome abnormalities are major determinants of outcomes of patients. The limited response of these patients to standard treatments, including induction chemotherapy, hypomethylating agents and venetoclax-based therapies and the discovery of an immune dysregulation have induced a shift to new emerging therapies, some of which being associated with promising efficacy. The main aim of these novel immune and nonimmune strategies consists in improving survival and in increasing the number of TP53-mutated MDS/AML patients in remission amenable to allogeneic stem cell transplantation.

14.
Leukemia ; 37(8): 1600-1610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37349598

RESUMO

We characterize the metabolic background in distinct Acute Myeloid Leukemias (AMLs), by comparing the metabolism of primary AML blasts isolated at diagnosis with that of normal hematopoietic maturing progenitors, using the Seahorse XF Agilent. Leukemic cells feature lower spare respiratory (SRC) and glycolytic capacities as compared to hematopoietic precursors (i.e. day 7, promyelocytes). According with Proton Leak (PL) values, AML blasts can be grouped in two well defined populations. The AML group with blasts presenting high PL or high basal OXPHOS plus high SRC levels had shorter overall survival time and significantly overexpressed myeloid cell leukemia 1 (MCL1) protein. We demonstrate that MCL1 directly binds to Hexokinase 2 (HK2) on the outer mitochondrial membrane (OMM). Overall, these results suggest that high PL and high SRC plus high basal OXPHOS levels at disease onset, arguably with the concourse of MCL1/HK2 action, are significantly linked with shorter overall survival time in AML. Our data describe a new function for MCL1 protein in AMLs' cells: by forming a complex with HK2, MCL1 co-localizes to VDAC on the OMM, thus inducing glycolysis and OXPHOS, ultimately conferring metabolic plasticity and promoting resistance to therapy.


Assuntos
Hexoquinase , Leucemia Mieloide Aguda , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo
15.
Technol Cancer Res Treat ; 22: 15330338221128689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36872875

RESUMO

Cholangiocarcinomas (CCAs) are a group of heterogeneous epithelial malignancies that can originate at the level of any location of the biliary tree. These tumors are relatively rare but associated with a high rate of mortality. CCAs are morphologically and molecularly heterogeneous and for their location can be distinguished as intracellular and extracellular, subdivided into perihilar and distal. Recent epidemiological, molecular, and cellular studies have supported that the consistent heterogeneity observed for CCAs may result from the convergence of various key elements mainly represented by risk factors, heterogeneity of the associated molecular abnormalities at genetic and epigenetic levels and by different potential cells of origin. These studies have consistently contributed to better defining the pathogenesis of CCAs and to identify in some instances new therapeutic targets. Although the therapeutic progress were still limited, these observations suggest that a better understanding of the molecular mechanisms underlying CCA in the future will help to develop more efficacious treatment strategies.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Epigenômica , Fatores de Risco , Ductos Biliares Intra-Hepáticos
16.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769040

RESUMO

In spite of consistent progress at the level of basic research and of clinical treatment, acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric patients. To improve the outcomes of these patients, it is necessary to identify new therapeutic targets. IL3RA (CD123, alpha subunit of the interleukin 3 receptor) is a cell membrane protein overexpressed in several hematologic malignancies, including AML blastic plasmocytoid dendritic cell neoplasms (BPDCN). Given the higher expression of CD123 on leukemic cells compared to normal hematopoietic cells and its low/absent expression on normal hematopoietic stem cells, it appears as a suitable and attractive target for therapy. Various drugs targeting CD123 have been developed and evaluated at clinical level: interleukin-3 conjugated with diphtheria toxin; naked neutralizing anti-CD123 antibodies; drug-antibody conjugates; bispecific antibodies targeting both CD123 and CD3; and chimeric antigen receptor (CAR) T cells engineered to target CD123. Some of these agents have shown promising results at the clinical level, including tagraxofusp (CD123 conjugated with diphtheria toxin) for the treatment of BPDCN and IMGN632 (anti-CD123 drug-conjugate), and flotetuzumab (bispecific anti-CD123 and anti-CD3 monoclonal antibody) for the treatment of AML. However, the therapeutic efficacy of CD123-targeting treatments is still unsatisfactory and must be improved through new therapeutic strategies and combined treatments with other antileukemic drugs.


Assuntos
Antineoplásicos , Imunoconjugados , Leucemia Mieloide Aguda , Adulto , Criança , Humanos , Antineoplásicos/uso terapêutico , Terapia Combinada , Células Dendríticas/metabolismo , Toxina Diftérica/uso terapêutico , Imunoconjugados/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo
17.
Expert Rev Anticancer Ther ; 23(2): 147-162, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36654529

RESUMO

INTRODUCTION: Cholangiocarcinomas (CCAs) are a heterogenous group of epithelial malignancies originating at any level of the biliary tree and are subdivided according to their location into intrahepatic (iCCA) and extrahepatic (eCCA). AREAS COVERED: This review provides an updated analysis of studies of genetic characterization of CCA at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION: With the development of genetic sequencing, several driver mutations have been identified and targeted as novel therapeutic approaches, including FGFR2, IDH1, BRAF, NTRK, HER2, ROS, and RET. Furthermore, identification of the cellular and molecular structure of the tumor microenvironment has contributed to the development of novel therapies, such as tumor immunotherapy. Combination therapies of chemotherapy plus targeted molecules or immunotherapy are under evaluation and offer the unique opportunity to improve the outcomes of CCA patients with advanced disease.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos , Terapia de Alvo Molecular , Microambiente Tumoral
18.
Curr Oncol ; 30(1): 610-640, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36661697

RESUMO

Esophageal cancer is among the most common tumors in the world and is associated with poor outcomes, with a 5-year survival rate of about 10-20%. Two main histological subtypes are observed: esophageal squamous cell carcinoma (ESCC), more frequent among Asian populations, and esophageal adenocarcinoma (EAC), the predominant type in Western populations. The development of molecular analysis techniques has led to the definition of the molecular alterations observed in ESCC, consistently differing from those observed in EAC. The genetic alterations observed are complex and heterogeneous and involve gene mutations, gene deletions and gene amplifications. However, despite the consistent progress in the definition of the molecular basis of ESCC, precision oncology for these patients is still virtually absent. The recent identification of molecular subtypes of ESCC with clinical relevance may foster the development of new therapeutic strategies. It is estimated that about 40% of the genetic alterations observed in ESCC are actionable. Furthermore, the recent introduction of solid tumor immunotherapy with immune checkpoint inhibitors (ICIs) showed that a minority of ESCC patients are responsive, and the administration of ICIs, in combination with standard chemotherapy, significantly improves overall survival over chemotherapy in ESCC patients with advanced disease.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Medicina de Precisão
19.
Expert Rev Mol Diagn ; 22(11): 1009-1035, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36459631

RESUMO

INTRODUCTION: Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the fourth most frequent cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED: Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION: A detailed and comprehensive study of the genetic abnormalities characterizing different HCC subsets represents a fundamental tool for a better understanding of the disease heterogeneity and for the identification of subgroups of patients responding or resistant to targeted treatments and for the discovery of new therapeutic targets. It is expected that a comprehensive characterization of these tumors may provide a fundamental contribution to improve the survival of a subset of HCC patients. Immunotherapy represents a new fundamental strategy for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Variações do Número de Cópias de DNA , Mutação , Biomarcadores Tumorais/genética
20.
Mediterr J Hematol Infect Dis ; 14(1): e2022080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425147

RESUMO

Despite recent progress, acute myeloid leukemia (AML) remains a disease associated with poor prognosis, particularly in older AML patients unfit to tolerate intensive chemotherapy treatment. The development and introduction in the therapy of Venetoclax (VEN), a potent BH3 mimetic targeting the antiapoptotic protein BCL-2, inducing apoptosis of leukemic cells, has shown to be a promising treatment for newly diagnosed, relapsed, and refractory AML patients ineligible for induction chemotherapy. Combination treatments using Ventoclax and a hypomethylating agent (azacitidine or decitabine) or low-intensity chemotherapy have shown in newly diagnosed patients variable response rates, with highly responsive patients with NPM1, IDH1-IDH2, TET2, and RUNX1 mutations and with scarcely responsive patients with FLT3, TP53 and ASXL1 mutations, complex karyotypes, and secondary AMLs. Patients with refractory/relapsing disease are less responsive to Venetoclax-based regimens. However, in the majority of patients, the responses have only a limited duration, and the development of resistance is frequently observed. Therefore, understanding the resistance mechanisms is crucial for developing new strategies and identifying rational drug combination regimens. In this context, two strategies seem to be promising: (i) triplet therapies based on the combined administration of Venetoclax, a hypomethylating agent (or low-dose chemotherapy), and an agent targeting a specific genetic alteration of leukemic cells (i.e., FLT3 inhibitors in FLT3-mutated AMLs) or an altered signaling pathway; (ii) combination therapies based on the administration of two BH3 mimetics (i.e., BCL-2 +MCL-1 mimetics) and a hypomethylating agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA