Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 53(1): 72, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100942

RESUMO

Epithelial cells are known to produce mediators which can influence the behaviour of neighbouring immune cells. Although the oral mucosa has gained increased interest as a route to induce allergy desensitisation and mucosal pathogen immunisation in dogs, there is only limited knowledge on the factors which impact mediator secretion by canine oral epithelial cells. The study's objective was to enlarge the knowledge on the stimuli that can influence the secretion of some pro- and anti-inflammatory cytokines and the chemokine CXCL8 by canine buccal epithelial cells. To investigate this, buccal epithelial cells were isolated from a biopsy of a dog and immortalised by lentiviral transduction of the SV40 large T antigen. The cells were stained with a CD49f and cytokeratin 3 antibody to confirm their epithelial origin. Cells were incubated with allergen extracts, Toll-like receptor ligands (TLRL), recombinant cytokines and vitamin A and D metabolites. Subsequently, the secretion of the cytokines interleukin (IL)-4, IL-6, IL-10, IL-17A, IFN-γ, TGF-ß1 and the chemokine CXCL8 was assayed by ELISA. Immortalised canine buccal epithelial cells stained positive for CD49f but not for cytokeratin 3. The cells produced detectable amounts of CXCL8 and TGF-ß1. A Dermatophagoides farinae extract, an Alternaria alternata extract, Pam3CSK4, heat-killed Listeria monocytogenes, FSL-1, flagellin and canine recombinant IL-17A significantly increased CXCL8 secretion, while the vitamin D metabolite calcitriol significantly suppressed the production of this chemokine. This study showed that certain allergens, TLRL, IL-17A and calcitriol modulate CXCL8 secretion in a cell line of canine buccal epithelial cells.


Assuntos
Interleucina-17 , Interleucina-8 , Alérgenos/metabolismo , Animais , Calcitriol/metabolismo , Citocinas/metabolismo , Cães , Células Epiteliais/metabolismo , Integrina alfa6/metabolismo , Interleucina-8/metabolismo , Queratina-3/metabolismo , Ligantes , Receptores Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
2.
Vet Immunol Immunopathol ; 228: 110101, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32861056

RESUMO

Current laboratory tests are unable to distinguish healthy from allergic dogs. Unlike serum antibody responses, circulating antibody-secreting cells (ASC) are temporarily induced after each contact with the antigen. These ASC can be identified using ELISPOT and the observation of allergen-specific ASC might correlate with the causative allergens in dogs with an allergic dermatitis. In this study, blood was sampled from six privately-owned allergic dogs and six non-allergic laboratory beagles to determine the frequency of circulating allergen-specific ASC for common allergens. Blood IgE+, IgA + and IgG + cells were magnetically isolated to determine the number of allergen-specific ASC with ELISPOT for Dermatophagoides farinae, Dermatophagoides pteronyssinus, Alternaria alternata, birch, timothy grass, wheat, cow's milk, bovine, chicken and lamb meat. For IgA and IgG, allergen-specific spots were observed, however for IgE, no spots were detected for any of the allergens. ELISPOT could not differentiate allergic from non-allergic dogs. When the responses to the different allergens were compared, more IgA ASC for D. pteronyssinus were observed compared to some of the other allergens which was statistically significant for the non-allergic dogs and approached significance in the allergic dogs. These findings indicate that ELISPOT can be used to identify circulating allergen-specific IgA- and IgG-secreting cells. The technique did however not detect allergen-specific IgE ASC and was unable to distinguish allergic from non-allergic dogs. Only a small number of studies have studied allergen-specific IgA in dogs. The finding that dogs have higher numbers of D. pteronyssinus-specific IgA ASC points out that apart from IgE and IgG, it might be interesting to include IgA measurements for certain allergens to analyse the complete spectrum of both the protective and pro-allergic antibody responses.


Assuntos
Alérgenos/imunologia , Anticorpos/metabolismo , Células Produtoras de Anticorpos/imunologia , Dermatite/veterinária , Doenças do Cão/imunologia , ELISPOT/veterinária , Animais , Anticorpos/imunologia , Especificidade de Anticorpos , Células Produtoras de Anticorpos/metabolismo , Dermatite/imunologia , Cães , Feminino , Imunoglobulina A/metabolismo , Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Masculino
3.
Front Immunol ; 11: 1033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582164

RESUMO

Application of allergens onto the sublingual epithelium is used to desensitize allergic individuals, a treatment known as sublingual immunotherapy. However, the response of sublingual epithelial cells to house dust mite allergen and potential tolerance-promoting adjuvants such as Toll-like receptor (TLR) ligands and calcitriol has not been investigated. In order to study this, primary sublingual epithelial cells were isolated from dogs and cultured in vitro. After 24-h incubation with a Dermatophagoides farinae extract, a Dermatophagoides pteronyssinus extract, TLR2 ligands (FSL-1, heat-killed Listeria monocytogenes, Pam3CSK4), a TLR3 ligand (poly I:C), a TLR4 ligand [lipopolysaccharide (LPS)], and calcitriol (1,25-dihydroxyvitamin D3), viability of the cells was analyzed using an MTT test, and their secretion of interleukin 6 (IL-6), IL-10, CXCL8, and transforming growth factor ß1 (TGF-ß1) was measured by enzyme-linked immunosorbent assay. Additionally, to evaluate its potential effect as an adjuvant, sublingual epithelial cells were incubated with calcitriol in combination with a D. farinae extract followed by measurement of CXCL8 secretion. Furthermore, the effect of D. farinae and calcitriol on the transcriptome was assessed by RNA sequencing. The viability of the sublingual epithelial cells was significantly decreased by poly I:C, but not by the other stimuli. CXCL8 secretion was significantly increased by D. farinae extract and all TLR ligands apart from LPS. Calcitriol significantly decreased CXCL8 secretion, and coadministration with D. farinae extract reduced CXCL8 concentrations to levels seen in unstimulated sublingual epithelial cells. Although detectable, TGF-ß1 secretion could not be modulated by any of the stimuli. Interleukin 6 and IL-10 could not be detected at the protein or at the mRNA level. It can be concluded that a D. farinae extract and TLR ligands augment the secretion of the proinflammatory chemokine CXCL8, which might interfere with sublingual desensitization. On the other hand, CXCL8 secretion was reduced by coapplication of calcitriol and a D. farinae extract. Calcitriol therefore seems to be a suitable candidate to be used as adjuvant during sublingual immunotherapy.


Assuntos
Alérgenos/administração & dosagem , Antígenos de Dermatophagoides/administração & dosagem , Calcitriol/administração & dosagem , Interleucina-8/biossíntese , Imunoterapia Sublingual/métodos , Adjuvantes Imunológicos/administração & dosagem , Animais , Células Cultivadas , Dermatophagoides farinae/imunologia , Cães , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Ligantes , Modelos Animais , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/imunologia , Mucosa Bucal/metabolismo , Prostaglandina-E Sintases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/genética , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA