Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 56(2): 350-358, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31743065

RESUMO

Black bears (Ursus americanus) have historically been considered an uncommon host for sarcoptic mange. However, over the last 25 yr, sarcoptic mange has been increasingly reported in black bears in the northeastern US. Syndromic monitoring is the most common surveillance approach for mange in bears, but tools to monitor exposure to Sarcoptes scabiei in bear populations have not been thoroughly evaluated under field conditions. In this study, we validated a commercially available enzyme-linked immunosorbent assay (ELISA), designed to detect antibodies against S. scabiei in dogs, for use in black bears with a sensitivity and specificity of 95.6% and 96.6%, respectively. To further examine the performance of this assay, serial serum samples from seven black bears with confirmed sarcoptic mange were collected posttreatment to determine the persistence of detectable antibody response with the ELISA. Antibodies in black bears waned to below the limit of detection between 4 and 14 wk, suggesting that serology studies might underestimate the number of exposed black bears after antibodies have waned. State-wide serosurveys in Pennsylvania from hunter-harvested black bears in 2017 and 2018 showed a significant difference in seroprevalence between regions with high occurrence of mange (mean seroprevalence 6.7%, range of 6.6-6.8%) and low occurrence of mange (no seropositive black bears were detected). Within Pennsylvania, these data indicate that the geographic distribution of exposure to S. scabiei, based on serologic testing, generally reflects the distribution of overt disease, as determined by syndromic surveillance. Collectively, these results indicate the evaluated ELISA is an effective tool for monitoring S. scabiei exposure in bear populations and provides the framework for additional studies regarding sarcoptic mange epidemiology in black bears.


Assuntos
Escabiose/veterinária , Ursidae/sangue , Animais , Anticorpos/sangue , Sarcoptes scabiei/imunologia , Escabiose/sangue , Escabiose/parasitologia , Estudos Soroepidemiológicos
2.
Parasitol Res ; 118(10): 2767-2772, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31388786

RESUMO

For two decades, the incidence and range of sarcoptic mange in black bears (Ursus americanus) in Pennsylvania has increased. The causative agent, Sarcoptes scabiei, can be directly or indirectly transmitted; therefore, data on environmental persistence is important for guiding management and public communications. The objective of this study was to determine the survival of S. scabiei at different temperatures. Full section skin samples and superficial skin scrapes were collected from bears immediately after euthanasia due to severe mange. After ~ 24 h on ice packs (shipment to lab), samples were placed in dishes at 0, 4, 18, or 30 °C and 60, 20, 12, and 25% relative humidity, respectively, and the percentage of mites alive, by life stage, was periodically determined. Humidity was recorded but not controlled. Temperature significantly affected mite survival, which was shortest at 0 °C (mostly ≤ 4 h) and longest at 4 °C (up to 13 days). No mites survived beyond 8 days at 18 °C or 6 days at 30 °C. Mites from full-thickness skin sections survived significantly longer than those from superficial skin scrapes. Adults typically survived longer than nymphs and larvae except at 30 °C where adults survived the shortest time. These data indicate that at cooler temperatures, S. scabiei can survive for days to over a week in the environment, especially if on host skin. However, these data also indicate that the environment is unlikely to be a long-term source of S. scabiei infection to bears, other wildlife, or domestic animals.


Assuntos
Sarcoptes scabiei/crescimento & desenvolvimento , Escabiose/veterinária , Ursidae/parasitologia , Animais , Animais Selvagens/parasitologia , Umidade , Larva/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Pennsylvania , Escabiose/parasitologia , Pele/parasitologia , Temperatura , Ursidae/fisiologia
4.
J Wildl Dis ; 54(3): 471-479, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29498895

RESUMO

Three mite species ( Demodex ursi, Ursicoptes americanus, and Sarcoptes scabiei) have been associated with mange in black bears ( Ursus americanus). Since the early 1990s, the number and geographic distribution of mange cases in black bears in Pennsylvania, US has increased; however, the causative mites have yet to be completely defined. We evaluated several diagnostic approaches for detection and identification of mites in 72 black bears with severe lesions consistent with mange. Sarcoptes scabiei was morphologically identified in skin scrapes from 66 of the bears; no mites were identified in the remaining six. Histopathologic lesions consistent with sarcoptic mange were observed in 39 of 40 bear skin samples examined, and intralesional mites were observed in samples from 38 of these bears. Samples were collected from a subset of the 72 bears for PCR testing targeting both the internal transcribed spacer (ITS)-2 region and cytochrome c oxidase I ( cox1) gene including 69 skin scrapes ( ITS-2 only), 56 skin biopsies ( ITS-2 and cox1), and 36 fecal samples ( ITS-2 and cox1). Skin scrapes were a more sensitive sample for PCR detection than either skin biopsies or fecal samples, and the ITS-2 primers proved more sensitive than cox1. Using a commercial indirect enzyme-linked immunosorbent assay, antibodies to S. scabiei were detected in 45/49 (92%) black bears with confirmed mange and 0/62 (0%) cubs with no gross lesions suggestive of mange and which were born to seronegative sows. Sarcoptes scabiei was the predominant mite associated with mange in black bears in Pennsylvania. Diagnostically, cytologic examination of skin scrapes was the most effective approach for diagnosing active mite infestations in black bears. The evaluated serologic assay accurately detected antibodies to S. scabiei in most bears with confirmed S. scabiei infestations. Additional research is needed to determine the usefulness of this approach for larger scale surveys and for asymptomatic bears.


Assuntos
DNA Intergênico/genética , Sarcoptes scabiei/genética , Escabiose/veterinária , Ursidae/parasitologia , Envelhecimento , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Masculino , Escabiose/diagnóstico , Escabiose/parasitologia
5.
J Parasitol ; 103(5): 593-597, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28639466

RESUMO

Since the early 1990s there has been an increase in the number of cases and geographic expansion of severe mange in the black bear (Ursus americanus) population in Pennsylvania. Although there are 3 species of mites associated with mange in bears, Sarcoptes scabiei has been identified as the etiologic agent in these Pennsylvania cases. Historically, S. scabiei-associated mange in bears has been uncommon and sporadic, although it is widespread and relatively common in canid populations. To better understand this recent emergence of sarcoptic mange in bears in Pennsylvania and nearby states, we genetically characterized S. scabiei samples from black bears in the eastern United States. These sequences were compared with newly acquired S. scabiei sequences from wild canids (red fox [Vulpes vulpes] and coyote [Canis latrans]) and a porcupine (Erethizon dorsatum) from Pennsylvania and Kentucky and also existing sequences in GenBank. The internal transcribed spacer (ITS)-2 region and cytochrome c oxidase subunit 1 (cox1) gene were amplified and sequenced. Twenty-four ITS-2 sequences were obtained from mites from bears (n = 16), red fox (n = 5), coyote (n = 2), and a porcupine. The sequences from bear samples were identical to each other or differed only at polymorphic bases, whereas S. scabiei from canids were more variable, but 2 were identical to S. scabiei sequences from bears. Eighteen cox1 sequences obtained from mites from bears represented 6 novel haplotypes. Phylogenetic analysis of cox1 sequences revealed 4 clades: 2 clades of mites of human origin from Panama or Australia, a clade of mites from rabbits from China, and a large unresolved clade that included the remaining S. scabiei sequences from various hosts and regions, including sequences from the bears from the current study. Although the cox1 gene was more variable than the ITS-2, phylogenetic analyses failed to detect any clustering of S. scabiei from eastern U.S. hosts. Rather, sequences from black bears grouped into a large clade that included S. scabiei from numerous hosts from Europe, Asia, Africa, and Australia. Collectively, these data suggest that the increasing number of S. scabiei cases in northeastern black bears is not due to the emergence and expansion of a single parasite strain.


Assuntos
Coiotes/parasitologia , Raposas/parasitologia , Porcos-Espinhos/parasitologia , Sarcoptes scabiei/genética , Escabiose/veterinária , Ursidae/parasitologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , DNA/química , DNA/genética , DNA Intergênico/química , DNA Intergênico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Maryland , Pennsylvania , Filogenia , Coelhos , Sarcoptes scabiei/classificação , Escabiose/parasitologia , Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA