Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 21(7): 6631-6657, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39176412

RESUMO

Facial emotion recognition (FER) is largely utilized to analyze human emotion in order to address the needs of many real-time applications such as computer-human interfaces, emotion detection, forensics, biometrics, and human-robot collaboration. Nonetheless, existing methods are mostly unable to offer correct predictions with a minimum error rate. In this paper, an innovative facial emotion recognition framework, termed extended walrus-based deep learning with Botox feature selection network (EWDL-BFSN), was designed to accurately detect facial emotions. The main goals of the EWDL-BFSN are to identify facial emotions automatically and effectively by choosing the optimal features and adjusting the hyperparameters of the classifier. The gradient wavelet anisotropic filter (GWAF) can be used for image pre-processing in the EWDL-BFSN model. Additionally, SqueezeNet is used to extract significant features. The improved Botox optimization algorithm (IBoA) is then used to choose the best features. Lastly, FER and classification are accomplished through the use of an enhanced optimization-based kernel residual 50 (EK-ResNet50) network. Meanwhile, a nature-inspired metaheuristic, walrus optimization algorithm (WOA) is utilized to pick the hyperparameters of EK-ResNet50 network model. The EWDL-BFSN model was trained and tested with publicly available CK+ and FER-2013 datasets. The Python platform was applied for implementation, and various performance metrics such as accuracy, sensitivity, specificity, and F1-score were analyzed with state-of-the-art methods. The proposed EWDL-BFSN model acquired an overall accuracy of 99.37 and 99.25% for both CK+ and FER-2013 datasets and proved its superiority in predicting facial emotions over state-of-the-art methods.


Assuntos
Algoritmos , Aprendizado Profundo , Emoções , Expressão Facial , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Bases de Dados Factuais , Reconhecimento Automatizado de Padrão/métodos , Face , Reprodutibilidade dos Testes
2.
Artigo em Inglês | MEDLINE | ID: mdl-38466600

RESUMO

Neural architecture search (NAS) is a popular method that can automatically design deep neural network structures. However, designing a neural network using NAS is computationally expensive. This article proposes a gradient-guided evolutionary NAS (GENAS) to design convolutional neural networks (CNNs) for image classification. GENAS is a hybrid algorithm that combines evolutionary global and local search operators to evolve a population of subnets sampled from a supernet. Each candidate architecture is encoded as a table describing which operations are associated with the edges between nodes signifying feature maps. Besides, evolutionary optimization uses novel crossover and mutation operators to manipulate the subnets using the proposed tabular encoding. Every n generations, the candidate architectures undergo a local search inspired by differentiable NAS. GENAS is designed to overcome the limitations of both evolutionary and gradient descent NAS. This algorithmic structure enables the performance assessment of the candidate architecture without retraining, thus limiting the NAS calculation time. Furthermore, subnet individuals are decoupled during evaluation to prevent strong coupling of operations in the supernet. The experimental results indicate that the searched structures achieve test errors of 2.45%, 16.86%, and 23.9% on CIFAR-10/100/ImageNet datasets and it costs only 0.26 GPU days on a graphic card. GENAS can effectively expedite the training and evaluation processes and obtain high-performance network structures.

3.
Math Biosci Eng ; 20(11): 20245-20273, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38052644

RESUMO

The utilization of computational models in the field of medical image classification is an ongoing and unstoppable trend, driven by the pursuit of aiding medical professionals in achieving swift and precise diagnoses. Post COVID-19, many researchers are studying better classification and diagnosis of lung diseases particularly, as it was reported that one of the very few diseases greatly affecting human beings was related to lungs. This research study, as presented in the paper, introduces an advanced computer-assisted model that is specifically tailored for the classification of 13 lung diseases using deep learning techniques, with a focus on analyzing chest radiograph images. The work flows from data collection, image quality enhancement, feature extraction to a comparative classification performance analysis. For data collection, an open-source data set consisting of 112,000 chest X-Ray images was used. Since, the quality of the pictures was significant for the work, enhanced image quality is achieved through preprocessing techniques such as Otsu-based binary conversion, contrast limited adaptive histogram equalization-driven noise reduction, and Canny edge detection. Feature extraction incorporates connected regions, histogram of oriented gradients, gray-level co-occurrence matrix and Haar wavelet transformation, complemented by feature selection via regularized neighbourhood component analysis. The paper proposes an optimized hybrid model, improved Aquila optimization convolutional neural networks (CNN), which is a combination of optimized CNN and DENSENET121 with applied batch equalization, which provides novelty for the model compared with other similar works. The comparative evaluation of classification performance among CNN, DENSENET121 and the proposed hybrid model is also done to find the results. The findings highlight the proposed hybrid model's supremacy, boasting 97.00% accuracy, 94.00% precision, 96.00% sensitivity, 96.00% specificity and 95.00% F1-score. In the future, potential avenues encompass exploring explainable machine learning for discerning model decisions and optimizing performance through strategic model restructuring.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Clorexidina , Simulação por Computador , Coleta de Dados , Engenharia
4.
Math Biosci Eng ; 20(9): 17138-17157, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37920050

RESUMO

Normal lung cells incur genetic damage over time, which causes unchecked cell growth and ultimately leads to lung cancer. Nearly 85% of lung cancer cases are caused by smoking, but there exists factual evidence that beta-carotene supplements and arsenic in water may raise the risk of developing the illness. Asbestos, polycyclic aromatic hydrocarbons, arsenic, radon gas, nickel, chromium and hereditary factors represent various lung cancer-causing agents. Therefore, deep learning approaches are employed to quicken the crucial procedure of diagnosing lung cancer. The effectiveness of these methods has increased when used to examine cancer histopathology slides. Initially, the data is gathered from the standard benchmark dataset. Further, the pre-processing of the collected images is accomplished using the Gabor filter method. The segmentation of these pre-processed images is done through the modified expectation maximization (MEM) algorithm method. Next, using the histogram of oriented gradient (HOG) scheme, the features are extracted from these segmented images. Finally, the classification of lung cancer is performed by the improved graph neural network (IGNN), where the parameter optimization of graph neural network (GNN) is done by the green anaconda optimization (GAO) algorithm in order to derive the accuracy maximization as the major objective function. This IGNN classifies lung cancer into normal, adeno carcinoma and squamous cell carcinoma as the final output. On comparison with existing methods with respect to distinct performance measures, the simulation findings reveal the betterment of the introduced method.


Assuntos
Arsênio , Boidae , Neoplasias Pulmonares , Humanos , Animais , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Redes Neurais de Computação , Algoritmos
5.
Math Biosci Eng ; 20(2): 2382-2407, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899539

RESUMO

The unprecedented rise in the number of COVID-19 cases has drawn global attention, as it has caused an adverse impact on the lives of people all over the world. As of December 31, 2021, more than 2, 86, 901, 222 people have been infected with COVID-19. The rise in the number of COVID-19 cases and deaths across the world has caused fear, anxiety and depression among individuals. Social media is the most dominant tool that disturbed human life during this pandemic. Among the social media platforms, Twitter is one of the most prominent and trusted social media platforms. To control and monitor the COVID-19 infection, it is necessary to analyze the sentiments of people expressed on their social media platforms. In this study, we proposed a deep learning approach known as a long short-term memory (LSTM) model for the analysis of tweets related to COVID-19 as positive or negative sentiments. In addition, the proposed approach makes use of the firefly algorithm to enhance the overall performance of the model. Further, the performance of the proposed model, along with other state-of-the-art ensemble and machine learning models, has been evaluated by using performance metrics such as accuracy, precision, recall, the AUC-ROC and the F1-score. The experimental results reveal that the proposed LSTM + Firefly approach obtained a better accuracy of 99.59% when compared with the other state-of-the-art models.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Análise de Sentimentos , Algoritmos , Medo
6.
Appl Intell (Dordr) ; 51(5): 2908-2938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764577

RESUMO

This 21st century is notable for experiencing so many disturbances at economic, social, cultural, and political levels in the entire world. The outbreak of novel corona virus 2019 (COVID-19) has been treated as a Public Health crisis of global Concern by the World Health Organization (WHO). Various outbreak models for COVID-19 are being utilized by researchers throughout the world to get well-versed decisions and impose significant control measures. Amid the standard methods for COVID-19 worldwide epidemic prediction, easy statistical, as well as epidemiological methods have got more consideration by researchers and authorities. One main difficulty in controlling the spreading of COVID-19 is the inadequacy and lack of medical tests for detecting as well as identifying a solution. To solve this problem, a few statistical-based advances are being enhanced and turn into a partial resolution up-to some level. To deal with the challenges of the medical field, a broad range of intelligent based methods, frameworks, and equipment have been recommended by Machine Learning (ML) and Deep Learning. As ML and DL have the ability of identifying and predicting patterns in complex large datasets, they are recognized as a suitable procedure for producing effective solutions for the diagnosis of COVID-19. In this paper, a perspective research has been conducted in the applicability of intelligent systems such as ML, DL and others in solving COVID-19 related outbreak issues. The main intention behind this study is (i) to understand the importance of intelligent approaches such as ML and DL for COVID-19 pandemic, (ii) discussing the efficiency and impact of these methods in the prognosis of COVID-19, (iii) the growth in the development of type of ML and advanced ML methods for COVID-19 prognosis,(iv) analyzing the impact of data types and the nature of data along with challenges in processing the data for COVID-19,(v) to focus on some future challenges in COVID-19 prognosis to inspire the researchers for innovating and enhancing their knowledge and research on other impacted sectors due to COVID-19.

7.
Math Biosci Eng ; 18(5): 5737-5757, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34517510

RESUMO

Small changes in retinal blood vessels may produce different pathological disorders which may further cause blindness. Therefore, accurate extraction of vasculature map of retinal fundus image has become a challenging task for analysis of different pathologies. The present study offers an unsupervised method for extraction of vasculature map from retinal fundus images. This paper presents the methodology for evolution of vessels using Modified Pixel Level Snake (MPLS) algorithm based on Black Top-Hat (BTH) transformation. In the proposed method, initially bimodal masking is used for extraction of the mask of the retinal fundus image. Then adaptive segmentation and global thresholding is applied on masked image to find the initial contour image. Finally, MPLS is used for evolution of contour in all four cardinal directions using external, internal and balloon potential. This proposed work is implemented using MATLAB software. DRIVE and STARE databases are used for checking the performance of the system. In the proposed work, various performance metrics such as sensitivity, specificity and accuracy are evaluated. The average sensitivity of 76.96%, average specificity of 98.34% and average accuracy of 96.30% is achieved for DRIVE database. This technique can also segment vessels of pathological images accurately; reaching the average sensitivity of 70.80%, average specificity of 96.40% and average accuracy of 94.41%. The present study provides a simple and accurate method for the detection of vasculature map for normal fundus images as well as pathological images. It can be helpful for the assessment of various retinal vascular attributes like length, diameter, width, tortuosity and branching angle.


Assuntos
Algoritmos , Vasos Retinianos , Animais , Bases de Dados Factuais , Fundo de Olho , Vasos Retinianos/diagnóstico por imagem , Serpentes
8.
Math Biosci Eng ; 18(5): 6178-6197, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34517529

RESUMO

The content-based image retrieval (CBIR) system searches and retrieves the similar images from the huge database using the significant features extracted from the image. Feature integration techniques used in the CBIR system assign static weights to each feature involved in the retrieval process that gives a smaller number of similar images as a result. Moreover, the retrieval time of the CBIR system increases due to the entire database search. To overcome this disadvantage the proposed work introduced a two-level searching process in the CBIR system. The initial level of the proposed framework uses the image selection rule to select more relevant images for the second-level process. The second level of the framework takes the proposed dominant color and radial difference pattern details from the query and selected images. By using color and texture features of the selected images, similarity measure is calculated. The proposed work assigns optimal dynamic weight to the similarity measure of color and texture features using the fruit fly optimization algorithm. This improves the retrieval performance of the CBIR system.


Assuntos
Armazenamento e Recuperação da Informação , Reconhecimento Automatizado de Padrão , Algoritmos , Bases de Dados Factuais
9.
Neurocomputing (Amst) ; 457: 40-66, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34149184

RESUMO

The unprecedented surge of a novel coronavirus in the month of December 2019, named as COVID-19 by the World Health organization has caused a serious impact on the health and socioeconomic activities of the public all over the world. Since its origin, the number of infected and deceased cases has been growing exponentially in almost all the affected countries of the world. The rapid spread of the novel coronavirus across the world results in the scarcity of medical resources and overburdened hospitals. As a result, the researchers and technocrats are continuously working across the world for the inculcation of efficient strategies which may assist the government and healthcare system in controlling and managing the spread of the COVID-19 pandemic. Therefore, this study provides an extensive review of the ongoing strategies such as diagnosis, prediction, drug and vaccine development and preventive measures used in combating the COVID-19 along with technologies used and limitations. Moreover, this review also provides a comparative analysis of the distinct type of data, emerging technologies, approaches used in diagnosis and prediction of COVID-19, statistics of contact tracing apps, vaccine production platforms used in the COVID-19 pandemic. Finally, the study highlights some challenges and pitfalls observed in the systematic review which may assist the researchers to develop more efficient strategies used in controlling and managing the spread of COVID-19.

10.
Interdiscip Sci ; 13(2): 229-259, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33576956

RESUMO

The amount of information in the scientific literature of the bio-medical domain is growing exponentially, which makes it difficult in developing a smart medical system. Summarization techniques help for efficient searching and understanding of relevant information from the medical documents. In the paper, an evolutionary algorithm based ensemble extractive summarization technique is devised as a smart medical application with the idea of hybrid artificial intelligence on natural language processing. We have considered the abstracts of the target article and its cited articles as the base summaries and a multi-objective evolutionary algorithm is applied for generating the ensemble summary of the target article. Each sentence of the base summaries is represented by a concept vector of the medical terms contained in it with the help of the Unified Modelling Language System (UMLS) tool which is widely used in various smart medical applications. These terms carry the key information of the sentence which is very useful to find out the semantic similarity among the sentences. Fitness functions of the evolutionary algorithm are mainly defined using clustering coefficient and sparsity index, the concepts of graph theory. After the convergence of the algorithm, the best solution of the final population gives the ensemble summary. Next, the semantic similarity of each sentence in the target article with the ensemble summary is calculated and the sentences which are most similar to the ensemble summary are considered as the summary of the target article. The method is applied to the articles available in the PubMed MEDLINE database system and experimental results are compared with some state of the art methods applied in the Bio-medical domain. Experimental results and comparative study based on the performance evaluation show that the method competes with some recently proposed summarization methods and outperforms others, which express the effectiveness of the proposed methodology. Different statistical tests have also been made to observe that the method is statistically significant.


Assuntos
Inteligência Artificial , Processamento de Linguagem Natural , Análise por Conglomerados , Semântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA