Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cancer ; 22(1): 133, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573301

RESUMO

Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
2.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885151

RESUMO

We aimed to identify novel markers for aggressive prostate cancer in a STAT3-low proteomics-derived dataset of mitochondrial proteins by immunohistochemical analysis and correlation with transcriptomic data and biochemical recurrence in a STAT3 independent PCa cohort. Formalin-fixed paraffin-embedded tissue (FFPE) sample selection for proteomic analysis and tissue-microarray (TMA) generation was conducted from a cohort of PCa patients. Retrospective data analysis was performed with the same cohort. 153 proteins differentially expressed between STAT3-low and STAT3-high samples were identified. Out of these, 46 proteins were associated with mitochondrial processes including oxidative phosphorylation (OXPHOS), and 45 proteins were upregulated, including NDUFS1/ATP5O. In a STAT3 independent PCa cohort, high expression of NDUFS1/ATP5O was confirmed by immunocytochemistry (IHC) and was significantly associated with earlier biochemical recurrence (BCR). mRNA expression levels for these two genes were significantly higher in intra-epithelial neoplasia and in PCa compared to benign prostate glands. NDUFS1/ATP5O levels are increased both at the mRNA and protein level in aggressive PCa. Our results provide evidence that NDUFS1/ATP5O could be used to identify high-risk PCa patients.

3.
Mol Cell ; 81(18): 3848-3865.e19, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547241

RESUMO

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.


Assuntos
Senescência Celular/fisiologia , NAD/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Linhagem Celular Tumoral , Senescência Celular/genética , Citosol , Glucose/metabolismo , Humanos , Hidrogênio/química , Hidrogênio/metabolismo , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , NAD/fisiologia , Oxirredução , Piruvato Carboxilase/metabolismo , Ácido Pirúvico/metabolismo
4.
Polymers (Basel) ; 13(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066234

RESUMO

The aim of this paper was to analyze selected properties of beech wood (Fagus sylvatica L.) treated by one-sided surface charring. Specimens were one-side charred with a hot plate using several time-temperature combinations (from 200 to 400 °C). Characteristics such as colour, discoloration, surface roughness, fire resistance, total carbohydrate content at several wood layers and decay resistance were evaluated. Surface charring was applied to the radial and tangential surfaces. Colour measurements showed that the surface of the wood turned grey due to charring. In addition to colour measurements, other experiments showed significant differences between radial and tangential specimens due to their different structures. The higher the temperature used in treating them, the lower the roughness values for radial specimens, while the trend for tangential specimens was the opposite. A smoother surface is more fire resistant, so radial specimens are generally better in this regard. Tangential specimens are more susceptible during preparation to forming cracks that impair flame resistance because a continuous protective densified layer is not formed. The determination of total carbohydrates revealed significant changes at various wood depths after surface charring. These changes were more predictable in radial specimens due to the annual ring orientation, because each layer consisted of a similar earlywood/latewood ratio. Finally, when decay resistance was assessed, weight loss was found to be lower in all specimens than in the references. The results suggest that charring at a particular combination of temperature and time improved the investigated properties of the surface-modified beech.

5.
Int J Cancer ; 148(3): 731-747, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33034050

RESUMO

Androgen deprivation therapy (ADT) remains a key approach in the treatment of prostate cancer (PCa). However, PCa inevitably relapses and becomes ADT resistant. Besides androgens, there is evidence that thyroid hormone thyroxine (T4) and its active form 3,5,3'-triiodo-L-thyronine (T3) are involved in the progression of PCa. Epidemiologic evidences show a higher incidence of PCa in men with elevated thyroid hormone levels. The thyroid hormone binding protein µ-Crystallin (CRYM) mediates intracellular thyroid hormone action by sequestering T3 and blocks its binding to cognate receptors (TRα/TRß) in target tissues. We show in our study that low CRYM expression levels in PCa patients are associated with early biochemical recurrence and poor prognosis. Moreover, we found a disease stage-specific expression of CRYM in PCa. CRYM counteracted thyroid and androgen signaling and blocked intracellular choline uptake. CRYM inversely correlated with [18F]fluoromethylcholine (FMC) levels in positron emission tomography/magnetic resonance imaging of PCa patients. Our data suggest CRYM as a novel antagonist of T3- and androgen-mediated signaling in PCa. The role of CRYM could therefore be an essential control mechanism for the prevention of aggressive PCa growth.


Assuntos
Cristalinas/genética , Cristalinas/metabolismo , Regulação para Baixo , Neoplasias da Próstata/patologia , Transdução de Sinais , Linhagem Celular Tumoral , Colina/administração & dosagem , Colina/análogos & derivados , Estudos de Coortes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metabolômica , Estadiamento de Neoplasias , Células PC-3 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores dos Hormônios Tireóideos/genética , Análise de Sequência de RNA , Análise Serial de Tecidos , Tri-Iodotironina/antagonistas & inibidores , Tri-Iodotironina/metabolismo , Cristalinas mu
6.
Mol Syst Biol ; 16(4): e9247, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32323921

RESUMO

Prostate cancer (PCa) has a broad spectrum of clinical behavior; hence, biomarkers are urgently needed for risk stratification. Here, we aim to find potential biomarkers for risk stratification, by utilizing a gene co-expression network of transcriptomics data in addition to laser-microdissected proteomics from human and murine prostate FFPE samples. We show up-regulation of oxidative phosphorylation (OXPHOS) in PCa on the transcriptomic level and up-regulation of the TCA cycle/OXPHOS on the proteomic level, which is inversely correlated to STAT3 expression. We hereby identify gene expression of pyruvate dehydrogenase kinase 4 (PDK4), a key regulator of the TCA cycle, as a promising independent prognostic marker in PCa. PDK4 predicts disease recurrence independent of diagnostic risk factors such as grading, staging, and PSA level. Therefore, low PDK4 is a promising marker for PCa with dismal prognosis.


Assuntos
Perfilação da Expressão Gênica/métodos , Recidiva Local de Neoplasia/genética , Neoplasias Experimentais/patologia , Neoplasias da Próstata/genética , Proteômica/métodos , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Fator de Transcrição STAT3/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Microdissecção e Captura a Laser , Masculino , Camundongos , Gradação de Tumores , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Fosforilação Oxidativa , Prognóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Fator de Transcrição STAT3/metabolismo , Biologia de Sistemas , Adulto Jovem
8.
J Clin Invest ; 128(1): 387-401, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29200404

RESUMO

STAT5B is often mutated in hematopoietic malignancies. The most frequent STAT5B mutation, Asp642His (N642H), has been found in over 90 leukemia and lymphoma patients. Here, we used the Vav1 promoter to generate transgenic mouse models that expressed either human STAT5B or STAT5BN642H in the hematopoietic compartment. While STAT5B-expressing mice lacked a hematopoietic phenotype, the STAT5BN642H-expressing mice rapidly developed T cell neoplasms. Neoplasia manifested as transplantable CD8+ lymphoma or leukemia, indicating that the STAT5BN642H mutation drives cancer development. Persistent and enhanced levels of STAT5BN642H tyrosine phosphorylation in transformed CD8+ T cells led to profound changes in gene expression that were accompanied by alterations in DNA methylation at potential histone methyltransferase EZH2-binding sites. Aurora kinase genes were enriched in STAT5BN642H-expressing CD8+ T cells, which were exquisitely sensitive to JAK and Aurora kinase inhibitors. Together, our data suggest that JAK and Aurora kinase inhibitors should be further explored as potential therapeutics for lymphoma and leukemia patients with the STAT5BN642H mutation who respond poorly to conventional chemotherapy.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Neoplasias Hematológicas/metabolismo , Leucemia de Células T/metabolismo , Linfoma de Células T/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT5/metabolismo , Substituição de Aminoácidos , Animais , Linfócitos T CD8-Positivos/patologia , Metilação de DNA/genética , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Neoplasias Hematológicas/genética , Humanos , Leucemia de Células T/genética , Leucemia de Células T/patologia , Linfoma de Células T/genética , Linfoma de Células T/patologia , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Fator de Transcrição STAT5/genética
9.
J Pathol ; 243(1): 51-64, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28603917

RESUMO

Castration-resistant prostate cancer is a lethal disease. The cell type(s) that survive androgen deprivation remain poorly described, despite global efforts to understand the various mechanisms of therapy resistance. We recently identified in wild-type (WT) mouse prostates a rare population of luminal progenitor cells that we called LSCmed according to their FACS profile (Lin- /Sca-1+ /CD49fmed ). Here, we investigated the prevalence and castration resistance of LSCmed in various mouse models of prostate tumourigenesis (Pb-PRL, Ptenpc-/- , and Hi-Myc mice). LSCmed prevalence is low (∼8%, similar to WT) in Hi-Myc mice, where prostatic androgen receptor signalling is unaltered, but is significantly higher in the two other models, where androgen receptor signalling is decreased, rising up to more than 80% in Ptenpc-/- prostates. LSCmed tolerate androgen deprivation and persist or are enriched 2-3 weeks after castration. The tumour-initiating properties of LSCmed from Ptenpc-/- mice were demonstrated by regeneration of tumours in vivo. Transcriptomic analysis revealed that LSCmed represent a unique cell entity as their gene expression profile is different from luminal and basal/stem cells, but shares markers of each. Their intrinsic androgen signalling is markedly decreased, explaining why LSCmed tolerate androgen deprivation. This also illuminates why Ptenpc-/- tumours are castration-resistant since LSCmed represent the most prevalent cell type in this model. We validated CK4 as a specific marker for LSCmed on sorted cells and prostate tissues by immunostaining, allowing for the detection of LSCmed in various mouse prostate specimens. In castrated Ptenpc-/- prostates, there was significant proliferation of CK4+ cells, further demonstrating their key role in castration-resistant prostate cancer progression. Taken together, this study identifies LSCmed as a probable source of prostate cancer relapse after androgen deprivation and as a new therapeutic target for the prevention of castrate-resistant prostate cancer. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/deficiência , Proliferação de Células , Células-Tronco Neoplásicas/enzimologia , PTEN Fosfo-Hidrolase/deficiência , Neoplasias de Próstata Resistentes à Castração/enzimologia , Antagonistas de Androgênios/farmacologia , Animais , Antineoplásicos Hormonais/farmacologia , Ataxina-1/metabolismo , Biomarcadores Tumorais/genética , Linhagem da Célula , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Integrina alfa6/metabolismo , Queratina-4/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/transplante , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/genética , Fenótipo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Transdução de Sinais
10.
Cell Death Dis ; 7(10): e2419, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27735950

RESUMO

Ewing sarcoma (ES) is the second most frequent childhood bone cancer driven by the EWS/FLI1 (EF) fusion protein. Genetically defined ES models are needed to understand how EF expression changes bone precursor cell differentiation, how ES arises and through which mechanisms of inhibition it can be targeted. We used mesenchymal Prx1-directed conditional EF expression in mice to study bone development and to establish a reliable sarcoma model. EF expression arrested early chondrocyte and osteoblast differentiation due to changed signaling pathways such as hedgehog, WNT or growth factor signaling. Mesenchymal stem cells (MSCs) expressing EF showed high self-renewal capacity and maintained an undifferentiated state despite high apoptosis. Blocking apoptosis through enforced BCL2 family member expression in MSCs promoted efficient and rapid sarcoma formation when transplanted to immunocompromised mice. Mechanistically, high BCL2 family member and CDK4, but low P53 and INK4A protein expression synergized in Ewing-like sarcoma development. Functionally, knockdown of Mcl1 or Cdk4 or their combined pharmacologic inhibition resulted in growth arrest and apoptosis in both established human ES cell lines and EF-transformed mouse MSCs. Combinatorial targeting of survival and cell cycle progression pathways could counteract this aggressive childhood cancer.


Assuntos
Ciclo Celular , Transformação Celular Neoplásica/patologia , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Osso e Ossos/patologia , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/metabolismo , Extremidades/patologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Osteogênese , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Transdução Genética
11.
Mol Cell Oncol ; 3(2): e1090048, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27308625

RESUMO

Interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling is considered to have important oncogenic functions in prostate cancer (PCa). However, a recent study highlighted the central role of IL-6/STAT3 signaling in regulation of the ARF-MDM2-p53 senescence axis. This reversal of the postulated oncogenic properties of IL-6/STAT3 signaling in PCa has important therapeutic implications.

12.
Cytokine ; 87: 26-36, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27349799

RESUMO

In the past decades, studies of the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling have uncovered highly conserved programs linking cytokine signaling to the regulation of essential cellular mechanisms such as proliferation, invasion, survival, inflammation and immunity. Inhibitors of the JAK/STAT pathway are used for treatment of autoimmune diseases, such as rheumatoid arthritis or psoriasis. Aberrant JAK/STAT signaling has been identified to contribute to cancer progression and metastatic development. Targeting of JAK/STAT pathway is currently one of the most promising therapeutic strategies in prostate cancer (PCa), hematopoietic malignancies and sarcomas. Notably, newly identified regulators of JAK/STAT signaling, the non-coding RNAs transcripts and their role as important targets and potential clinical biomarkers are highlighted in this review. In addition to the established role of the JAK/STAT signaling pathway in traditional cytokine signaling the non-coding RNAs add yet another layer of hidden regulation and function. Understanding the crosstalk of non-coding RNA with JAK/STAT signaling in cancer is of critical importance and may result in better patient stratification not only in terms of prognosis but also in the context of therapy.


Assuntos
Citocinas/metabolismo , Janus Quinases/metabolismo , Neoplasias/metabolismo , RNA não Traduzido/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Animais , Genoma , Humanos , Masculino , Camundongos , Neoplasias/terapia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Sarcoma/metabolismo , Sarcoma/terapia
13.
Swiss Med Wkly ; 145: w14215, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691865

RESUMO

Prostate cancer is one of the most prevalent forms of cancer in men worldwide. It remains a clinical challenge to identify lethal metastatic prostate cancers, which escape standard therapeutic intervention. Aberrant interleukin-6 (IL-6) / signal transducer and activator of transcription-3 (STAT3) signalling and loss of p53 occur during prostate cancer progression to metastatic disease. The abnormality of the IL-6/STAT3/p53 axis is frequently accompanied by other genetic alterations; however, its potential role as an important mediator of oncogenic reprogramming, invasion and metastatic transformation remains unknown. The failure of anti-IL-6 treatments is still unexplained and may be due to an incomplete understanding of the mechanism of the in vivo role of IL-6/STAT3 in prostate cancer. The identification of the alternative reading frame protein (ARF) / murine double minute protein (MDM2) / p53 tumour suppressor pathway potentially involving the IL-6/STAT3 axis as a restricting factor in prostate cancer deficient in the tumour suppressor phosphatase and tensin homologue (PTEN) opened new avenues to currently available therapies. This review summarises the current knowledge on the role of crucial pathways driving prostate cancer progression as well as metastatic disease and discusses the potential use of novel specific target molecules and how it can be exploited to avoid overtreatment and increase quality of life.


Assuntos
Interleucina-6/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Camundongos , Metástase Neoplásica , Neoplasias da Próstata/terapia , Qualidade de Vida
15.
Nat Commun ; 6: 7736, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198641

RESUMO

Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19(ARF) as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF-Mdm2-p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14(ARF) expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Interleucina-6/metabolismo , Neoplasias da Próstata/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular , Progressão da Doença , Genes p16 , Humanos , Interleucina-6/genética , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fator de Transcrição STAT3/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA