Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170310, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38272081

RESUMO

Global agricultural systems face one of the greatest sustainability challenges: meeting the growing demand for food without leaving a negative environmental footprint. United States (US) and China are the two largest economies and account for 39 % of total global greenhouse gases (GHG) emissions into the atmosphere. No-till is a promising land management option that allows agriculture to better adapt and mitigate climate change effects compared to traditional tillage. However, the efficacy of no-till for mitigating GHG is still debatable. In this meta-analysis, we comprehensively assess the impact of no-till (relative to traditional tillage) on GHG mitigation potential and crop productivity in different agroecological systems and management regimes in the US and China. Overall, no-till in China did not change crop yields, although soil CO2 (8 %) and N2O (12 %) emissions decreased significantly, while soil CH4 emissions increased by 12 %. In contrast to Chinese no-till, a significant improvement in crop yields (up to 12 %) was recorded on US cropland under no-till. Moreover, significant decreases in soil N2O (21 %) and CH4 (12 %) emissions were observed. Of the three cropping systems, only wheat showed significant reduction in CO2, N2O and CH4 emissions in the Chinese no-till system. In the case of US, no-till soybean-rice and maize cropping systems demonstrated significant emission reductions for N2O and CO2, respectively. Interestingly, yields of no-till maize in China and rice in US exceeded those of other no-till cereals. In China, no-till on medium-texture soils resulted in significant reductions in GHG emissions and higher crop yields compared to other soil types. In both countries, the relatively higher crop yields under irrigated versus non-irrigated no-till and the significant yield differences on fine textured soils under US no-till are likely due to the substantial N2O reductions. In summary, crop yield disparities from no-till between China and the US were related to the insignificant effects on controlling CH4 emissions and successfully mitigating N2O, respectively. This study comprehensively demonstrates how cropping system and pedoclimatic conditions influence the relative effectiveness of no-till in both countries.


Assuntos
Gases , Gases de Efeito Estufa , Estados Unidos , Dióxido de Carbono/análise , Óxido Nitroso/análise , Agricultura/métodos , Solo , Grão Comestível/química , China , Metano/análise
2.
Sci Total Environ ; 898: 165479, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37459989

RESUMO

The efficacy of alternative nitrogenous fertilizers for mitigating greenhouse gas and ammonia emissions from a rice-wheat cropping system in northern India was addressed in a laboratory incubation experiment using soil from a 10-year residue management field experiment (crop residue removal, CRR, vs. incorporation, CRI). Neem coated urea (NCU), standard urea (U), urea ammonium sulfate (UAS), and two alternative fertilizers, urea + urease inhibitor NBPT (UUI) and urea + urease inhibitor NBPT + nitrification inhibitor DMPSA (UUINI) were compared to non-fertilized controls for four weeks in incubation under anaerobic condition. Effects of fertilizers on global warming potential (GWP) and ammonia volatilization were dependent on residue treatment. Relative to standard urea, NCU reduced GWP by 11 % in CRI but not significantly in CRR; conversely, UAS reduced GWP by 12 % in CRR but not significantly in CRI. UUI and UUINI reduced GWP in both residue treatments and were more effective in CRI (21 % and 26 %) than CRR (15 % and 14 %). Relative to standard urea, NCU increased ammonia volatilization by 8 % in CRI but not significantly in CRR. Ammonia volatilization was reduced most strongly by UUI (40 % in CRI and 37 % in CRR); it was reduced 28-29 % by UUINI and 12-15 % by UAS. Overall, the urease inhibitor, alone and in combination with the nitrification inhibitor, was more effective in mitigating greenhouse gas and ammonia emissions than NCU. However, these products need to be tested in field settings to validate findings from the controlled laboratory experiment.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Triticum/metabolismo , Oryza/metabolismo , Amônia/metabolismo , Urease/química , Gases de Efeito Estufa/metabolismo , Aquecimento Global , Ureia/química , Nitrificação , Volatilização , Fertilizantes/análise , Solo/química
3.
J Exp Bot ; 74(6): 2127-2145, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36640126

RESUMO

Sustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery. Drought and warming reduced plant production and biomass allocation belowground. Drought increased specific root length and reduced root diameter in warmed plots but increased root starch concentrations under ambient temperature. Higher diameter and soluble sugar concentrations of roots and starch storage in crowns explained aboveground production under climate extremes. However, the lack of association between post-drought aboveground biomass and belowground carbon and nitrogen reserves contrasted with our predictions. These findings demonstrate that root trait plasticity and belowground carbon reserves play a key role in aboveground production during climate stress, helping predict pasture responses and inform management decisions under future climates.


Assuntos
Carbono , Pradaria , Poaceae , Secas , Biomassa , Amido , Ecossistema
4.
Mol Ecol ; 32(1): 229-243, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779067

RESUMO

Symbiotic fungi mediate important energy and nutrient transfers in terrestrial ecosystems. Environmental change can lead to shifts in communities of symbiotic fungi, but the consequences of these shifts for nutrient dynamics among symbiotic partners are poorly understood. Here, we assessed variation in carbon (C), nitrogen (N) and phosphorus (P) in tissues of arbuscular mycorrhizal (AM) fungi and a host plant (Medicago sativa) in response to experimental warming and drought. We linked compositional shifts in AM fungal communities in roots and soil to variation in hyphal chemistry by using high-throughput DNA sequencing and joint species distribution modelling. Compared to plants, AM hyphae was 43% lower in (C) and 24% lower in (N) but more than nine times higher in (P), with significantly lower C:N, C:P and N:P ratios. Warming and drought resulted in increases in (P) and reduced C:P and N:P ratios in all tissues, indicating fungal P accumulation was exacerbated by climate-associated stress. Warming and drought modified the composition of AM fungal communities, and many of the AM fungal genera that were linked to shifts in mycelial chemistry were also negatively impacted by climate variation. Our study offers a unified framework to link climate change, fungal community composition, and community-level functional traits. Thus, our study provides insight into how environmental change can alter ecosystem functions via the promotion or reduction of fungal taxa with different stoichiometric characteristics and responses.


Assuntos
Micobioma , Micorrizas , Ecossistema , Micobioma/genética , Secas , Raízes de Plantas/microbiologia , Solo/química , Plantas/microbiologia , Microbiologia do Solo , Fungos/genética
5.
Glob Chang Biol ; 28(22): 6741-6751, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36093790

RESUMO

Climate change, disturbance, and plant invasion threaten grassland ecosystems, but their combined and interactive effects are poorly understood. Here, we examine how the combination of disturbance and plant invasion influences the sensitivity of mixed-grass prairie to elevated carbon dioxide (eCO2 ) and warming. We established subplots of intact prairie and disturbed/invaded prairie within a free-air CO2 enrichment (to 600 ppmv) by infrared warming (+1.5°C day, 3°C night) experiment and followed plant and soil responses for 5 years. Elevated CO2 initially led to moderate increases in biomass and plant diversity in both intact and disturbed/invaded prairie, but these effects shifted due to strong eCO2 responses of the invasive forb Centaurea diffusa. In the final 3 years, biomass responses to eCO2 in disturbed/invaded prairie were 10 times as large as those in intact prairie (+186% vs. +18%), resulting in reduced rather than increased plant diversity (-17% vs. +10%). At the same time, warming interacted with disturbance/invasion and year, reducing the rate of topsoil carbon recovery following disturbance. The strength of these interactions demonstrates the need to incorporate disturbance into predictions of climate change effects. In contrast to expectations from studies in intact ecosystems, eCO2 may threaten plant diversity in ecosystems subject to soil disturbance and invasion.


Assuntos
Pradaria , Solo , Dióxido de Carbono , Ecossistema , Poaceae
6.
Glob Chang Biol ; 28(20): 5991-6001, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751572

RESUMO

The effects of climate change on plants and ecosystems are mediated by plant hydraulic traits, including interspecific and intraspecific variability of trait phenotypes. Yet, integrative and realistic studies of hydraulic traits and climate change are rare. In a semiarid grassland, we assessed the response of several plant hydraulic traits to elevated CO2 (+200 ppm) and warming (+1.5 to 3°C; day to night). For leaves of five dominant species (three graminoids and two forbs), and in replicated plots exposed to 7 years of elevated CO2 , warming, or ambient climate, we measured: stomatal density and size, xylem vessel size, turgor loss point, and water potential (pre-dawn). Interspecific differences in hydraulic traits were larger than intraspecific shifts induced by elevated CO2 and/or warming. Effects of elevated CO2 were greater than effects of warming, and interactions between treatments were weak or not detected. The forbs showed little phenotypic plasticity. The graminoids had leaf water potentials and turgor loss points that were 10% to 50% less negative under elevated CO2 ; thus, climate change might cause these species to adjust their drought resistance strategy away from tolerance and toward avoidance. The C4 grass also reduced allocation of leaf area to stomata under elevated CO2 , which helps explain observations of higher soil moisture. The shifts in hydraulic traits under elevated CO2 were not, however, simply due to higher soil moisture. Integration of our results with others' indicates that common species in this grassland are more likely to adjust stomatal aperture in response to near-term climate change, rather than anatomical traits; this contrasts with apparent effects of changing CO2 on plant anatomy over evolutionary time. Future studies should assess how plant responses to drought may be constrained by the apparent shift from tolerance (via low turgor loss point) to avoidance (via stomatal regulation and/or access to deeper soil moisture).


Assuntos
Dióxido de Carbono , Água , Carbono , Secas , Ecossistema , Pradaria , Fenótipo , Folhas de Planta/fisiologia , Solo , Água/fisiologia
7.
Plant Cell Environ ; 45(8): 2271-2291, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35419849

RESUMO

Carbon allocation determines plant growth, fitness and reproductive success. However, climate warming and drought impacts on carbon allocation patterns in grasses are not well known, particularly following grazing or clipping. A widespread C3 pasture grass, Festuca arundinacea, was grown at 26 and 30°C in controlled environment chambers and subjected to drought (65% reduction relative to well-watered controls). Leaf, root and whole-plant carbon fluxes were measured and linked to growth before and after clipping. Both drought and warming reduced gross primary production and plant biomass. Drought reduced net leaf photosynthesis but increased the leaf respiratory fraction of assimilated carbon. Warming increased root respiration but did not affect either net leaf photosynthesis or leaf respiration. There was no evidence of thermal acclimation. Moreover, root respiratory carbon loss was amplified in the combined drought and warming treatment and, in addition to a negative carbon balance aboveground, explained an enhanced reduction in plant biomass. Plant regrowth following clipping was strongly suppressed by drought, reflecting increased tiller mortality and exacerbated respiratory carbon loss. These findings emphasize the importance of considering carbon allocation patterns in response to grazing or clipping and interactions with climatic factors for sustainable pasture production in a future climate.


Assuntos
Secas , Poaceae , Biomassa , Carbono , Ciclo do Carbono , Dióxido de Carbono , Ecossistema , Folhas de Planta/fisiologia , Plantas
8.
Front Plant Sci ; 13: 836968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321443

RESUMO

Shifts in the timing, intensity and/or frequency of climate extremes, such as severe drought and heatwaves, can generate sustained shifts in ecosystem function with important ecological and economic impacts for rangelands and managed pastures. The Pastures and Climate Extremes experiment (PACE) in Southeast Australia was designed to investigate the impacts of a severe winter/spring drought (60% rainfall reduction) and, for a subset of species, a factorial combination of drought and elevated temperature (ambient +3°C) on pasture productivity. The experiment included nine common pasture and Australian rangeland species from three plant functional groups (C3 grasses, C4 grasses and legumes) planted in monoculture. Winter/spring drought resulted in productivity declines of 45% on average and up to 74% for the most affected species (Digitaria eriantha) during the 6-month treatment period, with eight of the nine species exhibiting significant yield reductions. Despite considerable variation in species' sensitivity to drought, C4 grasses were more strongly affected by this treatment than C3 grasses or legumes. Warming also had negative effects on cool-season productivity, associated at least partially with exceedance of optimum growth temperatures in spring and indirect effects on soil water content. The combination of winter/spring drought and year-round warming resulted in the greatest yield reductions. We identified responses that were either additive (Festuca), or less-than-additive (Medicago), where warming reduced the magnitude of drought effects. Results from this study highlight the sensitivity of diverse pasture species to increases in winter and spring drought severity similar to those predicted for this region, and that anticipated benefits of cool-season warming are unlikely to be realized. Overall, the substantial negative impacts on productivity suggest that future, warmer, drier climates will result in shortfalls in cool-season forage availability, with profound implications for the livestock industry and natural grazer communities.

9.
Glob Chang Biol ; 28(11): 3489-3514, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315565

RESUMO

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.


Assuntos
Dióxido de Carbono , Ecossistema , Austrália , Ciclo do Carbono , Mudança Climática
10.
Tree Physiol ; 42(3): 523-536, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34612494

RESUMO

Mistletoes are important co-contributors to tree mortality globally, particularly during droughts. In Australia, mistletoe distributions are expanding in temperate woodlands, while their hosts have experienced unprecedented heat and drought stress in recent years. We investigated whether the excessive water use of mistletoes increased the probability of xylem emboli in a mature woodland during the recent record drought that was compounded by multiple heatwaves. We continuously recorded transpiration ($T_{SLA}$) of infected and uninfected branches from two eucalypt species over two summers, monitored stem and leaf water potentials ($\Psi $) and used hydraulic vulnerability curves to estimate percent loss in conductivity (PLC) for each species. Variations in weather (vapor pressure deficit, photosynthetically active radiation, soil water content), host species and % mistletoe foliage explained 78% of hourly $T_{SLA}$. While mistletoe acted as an uncontrollable sink for water in the host even during typical summer days, daily $T_{SLA}$ increased up to 4-fold in infected branches on hot days, highlighting the previously overlooked importance of temperature stress in amplifying water loss in mistletoes. The increased water use of mistletoes resulted in significantly decreased host $\Psi _{\rm{leaf}}$ and $\Psi _{\rm{trunk}}$. It further translated to an estimated increase of up to 11% PLC for infected hosts, confirming greater hydraulic dysfunction of infected trees that place them at higher risk of hydraulic failure. However, uninfected branches of Eucalyptus fibrosa F.Muell. had much tighter controls on water loss than uninfected branches of Eucalyptus moluccana Roxb., which shifted the risk of hydraulic failure towards an increased risk of carbon starvation for E. fibrosa. The contrasting mechanistic responses to heat and drought stress between both co-occurring species demonstrates the complexity of host-parasite interactions and highlights the challenge in predicting species-specific responses to biotic agents in a warmer and drier climate.


Assuntos
Secas , Erva-de-Passarinho , Temperatura Alta , Água/fisiologia , Xilema
11.
Glob Chang Biol ; 27(19): 4727-4744, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34165839

RESUMO

Gross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%-75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt ). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary-line analysis to eddy covariance flux observations to (a) derive ecosystem GPP-Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP-Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down-welling short-wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP-Ta relationship. GPP-Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna-wet and dry seasons). The shape of GPP-Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2 : 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of these ecosystems.


Assuntos
Ciclo do Carbono , Ecossistema , Austrália , Florestas , Estações do Ano , Temperatura
12.
Sci Total Environ ; 782: 146819, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838377

RESUMO

Wetland ecosystems are critical to the regulation of the global carbon cycle, and there is a high demand for data to improve carbon sequestration and emission models and predictions. Decomposition of plant litter is an important component of ecosystem carbon cycling, yet a lack of knowledge on decay rates in wetlands is an impediment to predicting carbon preservation. Here, we aim to fill this knowledge gap by quantifying the decomposition of standardised green and rooibos tea litter over one year within freshwater and coastal wetland soils across four climates in Australia. We also captured changes in the prokaryotic members of the tea-associated microbiome during this process. Ecosystem type drove differences in tea decay rates and prokaryotic microbiome community composition. Decomposition rates were up to 2-fold higher in mangrove and seagrass soils compared to freshwater wetlands and tidal marshes, in part due to greater leaching-related mass loss. For tidal marshes and freshwater wetlands, the warmer climates had 7-16% less mass remaining compared to temperate climates after a year of decomposition. The prokaryotic microbiome community composition was significantly different between substrate types and sampling times within and across ecosystem types. Microbial indicator analyses suggested putative metabolic pathways common across ecosystems were used to breakdown the tea litter, including increased presence of putative methylotrophs and sulphur oxidisers linked to the introduction of oxygen by root in-growth over the incubation period. Structural equation modelling analyses further highlighted the importance of incubation time on tea decomposition and prokaryotic microbiome community succession, particularly for rooibos tea that experienced a greater proportion of mass loss between three and twelve months compared to green tea. These results provide insights into ecosystem-level attributes that affect both the abiotic and biotic controls of belowground wetland carbon turnover at a continental scale, while also highlighting new decay dynamics for tea litter decomposing under longer incubations.


Assuntos
Microbiota , Áreas Alagadas , Austrália , Carbono , Ecossistema , Água Doce , Solo , Chá
13.
Sci Bull (Beijing) ; 66(19): 2036-2044, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654173

RESUMO

Soil microorganisms are known to significantly contribute to climate change through soil carbon (C) cycle feedbacks. However, it is challenging to incorporate these feedbacks into predictions of future patterns of terrestrial C cycling, largely because of the vast diversity of soil microorganisms and their responses to environmental conditions. Here, we show that the composition of the bacterial community can provide information about the microbial community-level thermal response (MCTR), which drives ecosystem-scale soil C-climate feedbacks. The dominant taxa from 169 sites representing a gradient from tropical to boreal forest mainly belonged to the phyla Actinobacteria and Acidobacteria. Moreover, we show that the MCTR in warm biomes and acidic soils was linked primarily to bacteria, whereas the MCTR in cold biomes and alkaline soils was primarily associated with fungi. Our results provide strong empirical evidence of linkages between microbial composition and the MCTR across a wide range of forests, and suggest the importance of specific microorganisms in regulating soil C-climate feedbacks.


Assuntos
Microbiota , Solo , Carbono , Retroalimentação , Florestas , Bactérias
14.
Adv Sci (Weinh) ; 7(19): 2001242, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33042745

RESUMO

Significantly more carbon (C) is stored in deep soil than in shallow horizons, yet how the decomposition of deep soil organic C (SOC) will respond to rising temperature remains unexplored on large scales, leading to considerable uncertainties to predictions of the magnitude and direction of C-cycle feedbacks to climate change. Herein, short-term temperature sensitivity of SOC decomposition (expressed as Q 10) from six depths within the top 1 m soil from 90 upland forest sites (540 soil samples) across China is reported. Results show that Q 10 significantly increases with soil depth, suggesting that deep SOC is more vulnerable to loss with rising temperature in comparison to shallow SOC. Climate is the primary regulator of shallow soil Q 10 but its relative influence declines with depth; in contrast, soil C quality has a minor influence on Q 10 in shallow soil but increases its influence with depth. When considering the depth-dependent Q 10 variations, results further show that using the thermal response of shallow soil layer for the whole soil profile, as is usually done in model predictions, would significantly underestimate soil C-climate feedbacks. The results highlight that Earth system models need to consider multilayer soil C dynamics and their controls to improve prediction accuracy.

15.
PLoS One ; 15(10): e0239673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33027289

RESUMO

This study used high throughput, image-based phenotyping (HTP) to distinguish growth patterns, detect facilitation and interpret variations to nutrient uptake in a model mixed-pasture system in response to factorial low and high nitrogen (N) and phosphorus (P) application. HTP has not previously been used to examine pasture species in mixture. We used red-green-blue (RGB) imaging to obtain smoothed projected shoot area (sPSA) to predict absolute growth (AG) up to 70 days after planting (sPSA, DAP 70), to identify variation in relative growth rates (RGR, DAP 35-70) and detect overyielding (an increase in yield in mixture compared with monoculture, indicating facilitation) in a grass-legume model pasture. Finally, using principal components analysis we interpreted between species changes to HTP-derived temporal growth dynamics and nutrient uptake in mixtures and monocultures. Overyielding was detected in all treatments and was driven by both grass and legume. Our data supported expectations of more rapid grass growth and augmented nutrient uptake in the presence of a legume. Legumes grew more slowly in mixture and where growth became more reliant on soil P. Relative growth rate in grass was strongly associated with shoot N concentration, whereas legume RGR was not strongly associated with shoot nutrients. High throughput, image-based phenotyping was a useful tool to quantify growth trait variation between contrasting species and to this end is highly useful in understanding nutrient-yield relationships in mixed pasture cultivations.


Assuntos
Fabaceae/crescimento & desenvolvimento , Nutrientes/metabolismo , Poaceae/crescimento & desenvolvimento , Agricultura/métodos , Variação Biológica da População/genética , Variação Biológica da População/fisiologia , Biomassa , Fabaceae/genética , Pradaria , Ensaios de Triagem em Larga Escala/métodos , Nitrogênio/metabolismo , Fósforo/metabolismo , Poaceae/genética , Solo
16.
Environ Int ; 144: 106068, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32871382

RESUMO

Atmospheric CO2 concentration is increasing, largely due to anthropogenic activities. Previous studies of individual free-air CO2 enrichment (FACE) experimental sites have shown significant impacts of elevated CO2 (eCO2) on soil microbial communities; however, no common microbial response patterns have yet emerged, challenging our ability to predict ecosystem functioning and sustainability in the future eCO2 environment. Here we analyzed 66 soil microbial communities from five FACE sites, and showed common microbial response patterns to eCO2, especially for key functional genes involved in carbon and nitrogen fixation (e.g., pcc/acc for carbon fixation, nifH for nitrogen fixation), carbon decomposition (e.g., amyA and pulA for labile carbon decomposition, mnp and lcc for recalcitrant carbon decomposition), and greenhouse gas emissions (e.g., mcrA for methane production, norB for nitrous oxide production) across five FACE sites. Also, the relative abundance of those key genes was generally increased and directionally associated with increased biomass, soil carbon decomposition, and soil moisture. In addition, a further literature survey of more disparate FACE experimental sites indicated increased biomass, soil carbon decay, nitrogen fixation, methane and nitrous oxide emissions, plant and soil carbon and nitrogen under eCO2. A conceptual framework was developed to link commonly responsive functional genes with ecosystem processes, such as pcc/acc vs. soil carbon storage, amyA/pulA/mnp/lcc vs. soil carbon decomposition, and nifH vs. nitrogen availability, suggesting that such common responses of microbial functional genes may have the potential to predict ecosystem functioning and sustainability in the future eCO2 environment.


Assuntos
Dióxido de Carbono , Ecossistema , Biomassa , Dióxido de Carbono/análise , Nitrogênio , Solo , Microbiologia do Solo
17.
Am J Bot ; 107(9): 1238-1252, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32931042

RESUMO

PREMISE: The impact of elevated CO2 concentration ([CO2 ]) and climate warming on plant productivity in dryland ecosystems is influenced strongly by soil moisture availability. We predicted that the influence of warming on the stimulation of photosynthesis by elevated [CO2 ] in prairie plants would operate primarily through direct and indirect effects on soil water. METHODS: We measured light-saturated photosynthesis (Anet ), stomatal conductance (gs ), maximum Rubisco carboxylation rate (Vcmax ), maximum electron transport capacity (Jmax ) and related variables in four C3 plant species in the Prairie Heating and CO2 Enrichment (PHACE) experiment in southeastern Wyoming. Measurements were conducted over two growing seasons that differed in the amount of precipitation and soil moisture content. RESULTS: Anet in the C3 subshrub Artemisia frigida and the C3 forb Sphaeralcea coccinea was stimulated by elevated [CO2 ] under ambient and warmed temperature treatments. Warming by itself reduced Anet in all species during the dry year, but stimulated photosynthesis in S. coccinea in the wet year. In contrast, Anet in the C3 grass Pascopyrum smithii was not stimulated by elevated [CO2 ] or warming under wet or dry conditions. Photosynthetic downregulation under elevated [CO2 ] in this species countered the potential stimulatory effect under improved water relations. Warming also reduced the magnitude of CO2 -induced down-regulation in this grass, possibly by sustaining high levels of carbon utilization. CONCLUSIONS: Direct and indirect effects of elevated [CO2 ] and warming on soil water was an overriding factor influencing patterns of Anet in this semi-arid temperate grassland, emphasizing the important role of water relations in driving grassland responses to global change.


Assuntos
Dióxido de Carbono , Fotossíntese , Clima , Mudança Climática , Ecossistema , Pradaria , Solo
18.
Nature ; 580(7802): 227-231, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269351

RESUMO

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Biomassa , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Aquecimento Global/prevenção & controle , Modelos Biológicos , New South Wales , Fotossíntese , Solo/química , Árvores/crescimento & desenvolvimento
19.
Tree Physiol ; 40(9): 1192-1204, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32348526

RESUMO

Plant respiration can acclimate to changing environmental conditions and vary between species as well as biome types, although belowground respiration responses to ongoing climate warming are not well understood. Understanding the thermal acclimation capacity of root respiration (Rroot) in relation to increasing temperatures is therefore critical in elucidating a key uncertainty in plant function in response to warming. However, the degree of temperature acclimation of Rroot in rainforest trees and how root chemical and morphological traits are related to acclimation is unknown. Here we investigated the extent to which respiration of fine roots (≤2 mm) of four tropical and four warm-temperate rainforest tree seedlings differed in response to warmer growth temperatures (control and +6 °C), including temperature sensitivity (Q10) and the degree of acclimation of Rroot. Regardless of biome type, we found no consistent pattern in the short-term temperature responses of Rroot to elevated growth temperature: a significant reduction in the temperature response of Rroot to +6 °C treatment was only observed for a tropical species, Cryptocarya mackinnoniana, whereas the other seven species had either some stimulation or no alteration. Across species, Rroot was positively correlated with root tissue nitrogen concentration (mg g-1), while Q10 was positively correlated with root tissue density (g cm-3). Warming increased root tissue density by 20.8% but did not alter root nitrogen across species. We conclude that thermal acclimation capacity of Rroot to warming is species-specific and suggest that root tissue density is a useful predictor of Rroot and its thermal responses in rainforest tree seedlings.


Assuntos
Floresta Úmida , Árvores , Aclimatação , Austrália , Folhas de Planta , Plântula , Temperatura
20.
Glob Chang Biol ; 26(3): 1873-1885, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31518470

RESUMO

Determining soil carbon (C) responses to rising temperature is critical for projections of the feedbacks between terrestrial ecosystems, C cycle, and climate change. However, the direction and magnitude of this feedback remain highly uncertain due largely to our limited understanding of the spatial heterogeneity of soil C decomposition and its temperature sensitivity. Here we quantified C decomposition and its response to temperature change with an incubation study of soils from 203 sites across tropical to boreal forests in China spanning a wide range of latitudes (18°16' to 51°37'N) and longitudes (81°01' to 129°28'E). Mean annual temperature (MAT) and mean annual precipitation primarily explained the biogeographic variation in the decomposition rate and temperature sensitivity of soils: soil C decomposition rate decreased from warm and wet forests to cold and dry forests, while Q10-MAT (standardized to the MAT of each site) values displayed the opposite pattern. In contrast, biological factors (i.e. plant productivity and soil bacterial diversity) and soil factors (e.g. clay, pH, and C availability of microbial biomass C and dissolved organic C) played relatively small roles in the biogeographic patterns. Moreover, no significant relationship was found between Q10-MAT and soil C quality, challenging the current C quality-temperature hypothesis. Using a single, fixed Q10-MAT value (the mean across all forests), as is usually done in model predictions, would bias the estimated soil CO2 emissions at a temperature increase of 3.0°C. This would lead to overestimation of emissions in warm biomes, underestimation in cold biomes, and likely significant overestimation of overall C release from soil to the atmosphere. Our results highlight that climate-related biogeographic variation in soil C responses to temperature needs to be included in next-generation C cycle models to improve predictions of C-climate feedbacks.


Assuntos
Ecossistema , Solo , Carbono , China , Florestas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA