Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Front Vet Sci ; 11: 1337461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746930

RESUMO

Porcine circovirus (PCV) typically causes severe immune suppression in pigs, leading to mixed clinical infections with various pathogens that can cause significant harm to the pig industry. PCV has four subgenotypes, with PCV4 being an emerging virus that requires investigation due to its potential for epidemic outbreaks. Therefore, there is a need to develop a method that can detect all four PCV strains simultaneously. In this study, four pairs of specific primers and TaqMan probes were designed based on the conserved sequence of the PCV1-4 ORF2 gene to establish a PCV1-4 TaqMan multiplex real-time quantitative PCR method. The novel method was compared to six commercial testing kits for its efficacy. Then, a total of 595 mixed samples of spleen and lymph node collected from 12 districts in Chengdu from July to December 2021 were tested using the novel method. The results showed that the novel PCV1-4 TaqMan multiplex real-time quantitative PCR detection method has satisfied specificity, sensitivity, and repeatability. The positive rates of PCV1, PCV2, and PCV3 in Chengdu were 2.18%, 31.60%, and 15.29%, respectively, while no positive PCV4 was detected. The mixed infection rate of PCV2 and PCV3 was 5.21%. Our novel method may be as a potential method for PCV1-4 detection. Currently, PCV2 is the main epidemic PCV subtype in Chengdu, while the potential threat of PCV4 should also be considered.

2.
Front Cell Infect Microbiol ; 14: 1347173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500503

RESUMO

Proteus mirabilis, a prevalent urinary tract pathogen and formidable biofilm producer, especially in Catheter-Associated Urinary Tract Infection, has seen a worrying rise in multidrug-resistant (MDR) strains. This upsurge calls for innovative approaches in infection control, beyond traditional antibiotics. Our research introduces bacteriophage (phage) therapy as a novel non-antibiotic strategy to combat these drug-resistant infections. We isolated P2-71, a lytic phage derived from canine feces, demonstrating potent activity against MDR P. mirabilis strains. P2-71 showcases a notably brief 10-minute latent period and a significant burst size of 228 particles per infected bacterium, ensuring rapid bacterial clearance. The phage maintains stability over a broad temperature range of 30-50°C and within a pH spectrum of 4-11, highlighting its resilience in various environmental conditions. Our host range assessment solidifies its potential against diverse MDR P. mirabilis strains. Through killing curve analysis, P2-71's effectiveness was validated at various MOI levels against P. mirabilis 37, highlighting its versatility. We extended our research to examine P2-71's stability and bactericidal kinetics in artificial urine, affirming its potential for clinical application. A detailed genomic analysis reveals P2-71's complex genetic makeup, including genes essential for morphogenesis, lysis, and DNA modification, which are crucial for its therapeutic action. This study not only furthers the understanding of phage therapy as a promising non-antibiotic antimicrobial but also underscores its critical role in combating emerging MDR infections in both veterinary and public health contexts.


Assuntos
Bacteriófago P2 , Bacteriófagos , Animais , Cães , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteus mirabilis , Biofilmes , Bacteriófagos/genética
3.
Sci Rep ; 14(1): 2745, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302507

RESUMO

The objective of this study was to analyze the antimicrobial resistance (AMR) characteristics produced by antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and gene cassettes in Escherichia coli isolated from the feces of captive black bears. Antimicrobial susceptibility testing was performed by using the disk diffusion method, and both MGEs and integron gene cassettes were detected by polymerase chain reaction. Our results showed that 43.7% (62/142) of the isolates were multidrug resistant strains and 97.9% (139/142) of the isolates were resistant to at least one antibiotic. The highest AMR phenotype was observed for tetracycline (79.6%, 113/142), followed by ampicillin (50.0%, 71/142), trimethoprim-sulfamethoxazole (43.7%, 62/142) and cefotaxime (35.9%, 51/142). However, all isolates were susceptible to tobramycin. tetA had the highest occurrence in 6 ARGs in 142 E. coli isolates (76.8%, 109/142). Ten mobile genetic elements were observed and IS26 was dominant (88.0%, 125/142). ISECP1 was positively associated with five ß-lactam antibiotics. ISCR3/14, IS1133 and intI3 were not detected. Seventy-five E. coli isolates (65 intI1-positive isolates, 2 intI2-positive isolates and 8 intI1 + intI2-positive isolates) carried integrons. Five gene cassettes (dfrA1, aadA2, dfrA17-aadA5, aadA2-dfrA12 and dfrA1-aadA1) were identified in the intI1-positive isolates and 2 gene cassettes (dfrA1-catB2-sat2-aadA1 and dfrA1-catB2-sat1-aadA1) were observed in the intI2-positive isolates. Monitoring of ARGs, MGEs and gene cassettes is important to understand the prevalence of AMR, which may help to introduce measures to prevent and control of AMR in E. coli for captive black bears.


Assuntos
Escherichia coli , Ursidae , Animais , Antibacterianos/farmacologia , Ursidae/genética , Farmacorresistência Bacteriana/genética , Integrons/genética
4.
PLoS One ; 19(2): e0298053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416699

RESUMO

The increasing number of multi-drug resistant (MDR) bacteria in companion animals poses a threat to both pet treatment and public health. To investigate the characteristics of MDR Escherichia coli (E. coli) from dogs, we detected the antimicrobial resistance (AMR) of 135 E. coli isolates from diarrheal pet dogs by disc diffusion method (K-B method), and screened antibiotic resistance genes (ARGs), virulence-associated genes (VAGs), and population structure (phylogenetic groups and MLST) by polymerase chain reaction (PCR) for 74 MDR strains, then further analyzed the association between AMRs and ARGs or VAGs. Our results showed that 135 isolates exhibited high resistance to AMP (71.11%, 96/135), TET (62.22%, 84/135), and SXT (59.26%, 80/135). Additionally, 54.81% (74/135) of the isolates were identified as MDR E. coli. In 74 MDR strains, a total of 12 ARGs in 6 categories and 14 VAGs in 4 categories were observed, of which tetA (95.95%, 71/74) and fimC (100%, 74/74) were the most prevalent. Further analysis of associations between ARGs and AMRs or VAGs in MDR strains revealed 23 significant positive associated pairs were observed between ARGs and AMRs, while only 5 associated pairs were observed between ARGs and VAGs (3 positive associated pairs and 2 negative associated pairs). Results of population structure analysis showed that B2 and D groups were the prevalent phylogroups (90.54%, 67/74), and 74 MDR strains belonged to 42 STs (6 clonal complexes and 23 singletons), of which ST10 was the dominant lineage. Our findings indicated that MDR E. coli from pet dogs carry a high diversity of ARGs and VAGs, and were mostly belong to B2/D groups and ST10. Measures should be taken to prevent the transmission of MDR E. coli between companion animals and humans, as the fecal shedding of MDR E. coli from pet dogs may pose a threat to humans.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Cães , Humanos , Virulência/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Tipagem de Sequências Multilocus , Filogenia , Diarreia/veterinária , Diarreia/microbiologia , Farmacorresistência Bacteriana Múltipla/genética
5.
Drug Dev Ind Pharm ; 50(1): 45-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38095592

RESUMO

OBJECTIVE: Florfenicol(FF) is an excellent veterinary antibiotic, limited by poor solubility and poor bioavailability. SIGNIFICANCE: Here in, we aimed to explore the applicability of fast disintegrating tablets compressed from Florfenicol-loaded solid dispersions (FF-SD-FDTs) to improve the dissolution rate and oral bioavailability of Florfenicol. METHODS: Utilizing selecting appropriate preparation methods and carriers, the solid dispersions of Florfenicol (FF-SDs) were prepared by solvent evaporation and the fast disintegrating tablets (FF-SD-FDTs) were prepared by the direct compression (DC) method. RESULTS: The tablet properties including hardness, friability, disintegration time, weight variation, etc. all met the specifications of Chinese Veterinary Pharmacopeia(CVP). FF-SD-FDTs significantly improved drug dissolution and dispersion of FF in vitro compared to florfenicol conventional tablets (FF-CTs). A pharmacokinetics study in German shepherd dogs proved the AUC0-∞ and Cmax values of FF-SD-FDTs are 1.38 and 1.38 times more than FF-CTs, respectively. CONCLUSIONS: Overall, it can be concluded that FF-SD-FDTs with excellent disintegration and dissolution properties were successfully produced, which greatly improved the oral bioavailability of the poorly soluble drug FF, and the study provided a new idea for a broader role of FF in pet clinics.


Assuntos
Tecnologia , Tianfenicol/análogos & derivados , Animais , Cães , Disponibilidade Biológica , Solubilidade , Liberação Controlada de Fármacos , Comprimidos
6.
Microorganisms ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004810

RESUMO

Trichosporon asahii is a basidiomycete yeast that is pathogenic to humans and animals, and fluconazole-resistant strains have recently increased. Farnesol secreted by fungi is a factor that causes variations in fluconazole resistance; however, few studies have explored the underlying mechanisms. Therefore, this study aims to delineate the fluconazole resistance mechanisms of T. asahii and explore farnesol's effects on these processes. A comparative metabolome-transcriptome analysis of untreated fluconazole-sensitive (YAN), fluconazole-resistant (PB) T. asahii strains, and 25 µM farnesol-treated strains (YAN-25 and PB-25, respectively) was performed. The membrane lipid-related genes and metabolites were upregulated in the PB vs. YAN and PB-25 vs. PB comparisons. Farnesol demonstrated strain-dependent mechanisms underlying fluconazole tolerance between the YAN and PB strains, and upregulated and downregulated efflux pumps in PB-25 and YAN-25 strains, respectively. Membrane lipid-related metabolites were highly correlated with transporter-coding genes. Fluconazole resistance in T. asahii was induced by membrane lipid bio-synthesis activation. Farnesol inhibited fluconazole resistance in the sensitive strain, but enhanced resistance in the resistant strain by upregulating efflux pump genes and membrane lipids. This study offers valuable insights into the mechanisms underlying fungal drug resistance and provides guidance for future research aimed at developing more potent antifungal drugs for clinical use.

7.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003277

RESUMO

Liver fibrosis (LF) is a late-stage process observed in various chronic liver diseases with bile and retinol metabolism closely associated with it. Adipose-derived mesenchymal stem cells (ADMSCs) have shown significant therapeutic potential in treating LF. In this study, the transplantation of ADMSCs was applied to a CCl4-induced LF model to investigate its molecular mechanism through a multi-omics joint analysis. The findings reveal that ADMSCs effectively reduced levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), gamma-glutamyltransferase (GGT), Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and α-Smooth muscle actin (α-SMA), thereby mitigating liver lesions, preventing liver parenchymal necrosis, and improving liver collagen deposition. Furthermore, 4751 differentially expressed genes (DEGs) and 270 differentially expressed metabolites (DMs) were detected via transcriptome and metabolomics analysis. Conjoint analysis showed that ADMSCs up-regulated the expression of Cyp7a1, Baat, Cyp27a1, Adh7, Slco1a4, Aldh1a1, and Adh7 genes to promote primary bile acids (TCDCA: Taurochenodeoxycholic acid; GCDCA: Glycochenodeoxycholic acid; GCA: glycocholic acid, TCA: Taurocholic acid) synthesis, secretion and retinol metabolism. This suggests that ADMSCs play a therapeutic role in maintaining bile acid (BA) homeostasis and correcting disturbances in retinol metabolism.


Assuntos
Hepatopatias , Células-Tronco Mesenquimais , Humanos , Vitamina A/metabolismo , Transcriptoma , Cirrose Hepática/genética , Cirrose Hepática/terapia , Cirrose Hepática/induzido quimicamente , Fígado/metabolismo , Hepatopatias/metabolismo , Obesidade/metabolismo , Ácidos e Sais Biliares/metabolismo , Células-Tronco Mesenquimais/patologia
8.
PLoS One ; 18(11): e0289028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011149

RESUMO

This study aimed to investigate the antimicrobial resistance (AMR), antibiotic resistance genes (ARGs) and integrons in 157 Escherichia coli (E. coli) strains isolated from feces of captive musk deer from 2 farms (Dujiang Yan and Barkam) in Sichuan province. Result showed that 91.72% (144/157) strains were resistant to at least one antimicrobial and 24.20% (38/157) strains were multi-drug resistant (MDR). The antibiotics that most E. coli strains were resistant to was sulfamethoxazole (85.99%), followed by ampicillin (26.11%) and tetracycline (24.84%). We further detected 13 ARGs in the 157 E. coli strains, of which blaTEM had the highest occurrence (91.72%), followed by aac(3')-Iid (60.51%) and blaCTX-M (16.56%). Doxycycline, chloramphenicol, and ceftriaxone resistance were strongly correlated with the presence of tetB, floR and blaCTX-M, respectively. The strongest positive association among AMR phenotypes was ampicillin/cefuroxime sodium (OR, 828.000). The strongest positive association among 16 pairs of ARGs was sul1/floR (OR, 21.667). Nine pairs positive associations were observed between AMR phenotypes and corresponding resistance genes and the strongest association was observed for CHL/floR (OR, 301.167). Investigation of integrons revealed intl1 and intl2 genes were detected in 10.19% (16/157) and 1.27% (2/157) E. coli strains, respectively. Only one type of gene cassettes (drA17-aadA5) was detected in class 1 integron positive strains. Our data implied musk deer is a reservoir of ARGs and positive associations were common observed among E. coli strains carrying AMRs and ARGs.


Assuntos
Anti-Infecciosos , Cervos , Infecções por Escherichia coli , Animais , Antibacterianos/farmacologia , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Farmacorresistência Bacteriana/genética , Ampicilina , China , Ruminantes , Integrons/genética , Testes de Sensibilidade Microbiana
9.
Front Microbiol ; 14: 1277221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954234

RESUMO

Enterococcus spp., as an opportunistic pathogen, are widely distributed in the environment and the gastrointestinal tracts of both humans and animals. Captive Asian elephants, popular animals at tourist attractions, have frequent contact with humans. However, there is limited information on whether captive Asian elephants can serve as a reservoir of antimicrobial resistance (AMR). The aim of this study was to characterize AMR, antibiotic resistance genes (ARGs), virulence-associated genes (VAGs), gelatinase activity, hemolysis activity, and biofilm formation of Enterococcus spp. isolated from captive Asian elephants, and to analyze the potential correlations among these factors. A total of 62 Enterococcus spp. strains were isolated from fecal samples of captive Asian elephants, comprising 17 Enterococcus hirae (27.4%), 12 Enterococcus faecalis (19.4%), 8 Enterococcus faecium (12.9%), 7 Enterococcus avium (11.3%), 7 Enterococcus mundtii (11.3%), and 11 other Enterococcus spp. (17.7%). Isolates exhibited high resistance to rifampin (51.6%) and streptomycin (37.1%). 50% of Enterococcus spp. isolates exhibited multidrug resistance (MDR), with all E. faecium strains demonstrating MDR. Additionally, nine ARGs were identified, with tet(M) (51.6%), erm(B) (24.2%), and cfr (21.0%) showing relatively higher detection rates. Biofilm formation, gelatinase activity, and α-hemolysin activity were observed in 79.0, 24.2, and 14.5% of the isolates, respectively. A total of 18 VAGs were detected, with gelE being the most prevalent (69.4%). Correlation analysis revealed 229 significant positive correlations and 12 significant negative correlations. The strongest intra-group correlations were observed among VAGs. Notably, we found that vancomycin resistance showed a significant positive correlation with ciprofloxacin resistance, cfr, and gelatinase activity, respectively. In conclusion, captive Asian elephants could serve as significant reservoirs for the dissemination of AMR to humans.

10.
Animals (Basel) ; 13(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37889781

RESUMO

Enterocytozoon bieneusi and Encephalitozoon spp. are microsporidian pathogens with zoonotic potential that pose significant public health concerns. To ascertain the occurrence and genotypes of E. bieneusi and Encephalitozoon spp., we used nested PCR to amplify the internal transcribed spacer (ITS) gene and DNA sequencing to analyze 198 fecal samples from red pandas from 6 zoos in China. The total rate of microsporidial infection was 15.7% (31/198), with 12.1% (24/198), 1.0% (2/198), 2.0% (4/198) and 1.0% (2/198) for infection rate of E. bieneusi, Encephalitozoon cuniculi, Encephalitozoon intestinalis and Encephalitozoon hellem, respectively. One red panda was detected positive for a mixed infection (E. bieneusi and E. intestinalis). Red pandas living in semi-free conditions are more likely to be infected with microsporidia (χ2 = 6.212, df = 1, p < 0.05). Three known (SC02, D, and PL2) and one novel (SCR1) genotypes of E. bieneusi were found. Three genotypes of E. bieneusi (SC02, D, SCR1) were grouped into group 1 with public health importance, while genotype PL2 formed a separate clade associated with group 2. These findings suggest that red pandas may serve as a host reservoir for zoonotic microsporidia, potentially allowing transmission from red pandas to humans and other animals.

11.
Front Microbiol ; 14: 1206187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465023

RESUMO

Corynebacterium pseudotuberculosis is a zoonotic pathogen that causes lymphadenitis in humans, livestock, and wildlife. In this study, C. pseudotuberculosis biovar equi strains were isolated from three alpacas. Antibiotic susceptibility tests and pathogenicity tests were also conducted. Moreover, one strain was sequenced using DNBSEQ and Oxford Nanopore technology. The three strains exhibited resistance to aztreonam, fosfomycin, and nitrofurantoin. The median lethal doses (LD50) of strains G1, S2 and BA3 in experimentally infected mice was 1.66 × 105 CFU, 3.78 × 105 CFU and 3.78 × 105 CFU, respectively. The sequencing of strain G1 resulted in the assembly of a chromosomal scaffold comprising 2,379,166 bp with a G + C content of 52.06%. Genome analysis of strain G1 revealed the presence of 48 virulence genes and 5 antibiotic resistance genes (ARGs). Comparative genomic analysis demonstrates a high degree of genetic similarity among C. pseudotuberculosis strains, in contrast to other Corynebacterium species, with a clear delineation between strains belonging to the two biovars (ovis and equi). The data of the present study contribute to a better understanding of the properties of C. pseudotuberculosis biovar equi strains and the potential risk they pose to alpacas and other livestock, as well as the necessity of ongoing surveillance and monitoring of infectious diseases in animals.

12.
BMC Vet Res ; 19(1): 98, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516856

RESUMO

BACKGROUND: Neonatal calf diarrhea (NCD) is typically treated with antibiotics, while long-term application of antibiotics induces drug resistance and antibiotic residues, ultimately decreasing feed efficiency. Pueraria polysaccharide (PPL) is a versatile antimicrobial, immunomodulatory, and antioxidative compound. This study aimed to compare the therapeutic efficacy of different doses of PPL (0.2, 0.4, 0.8 g/kg body weight (BW)) and explore the effect of plasma metabolites in diarrheal calves by the best dose of PPL. RESULTS: PPL could effectively improve the daily weight gain, fecal score, and dehydration score, and the dosage of 0.4 g/kg BW could reach curative efficacy against calf diarrhea (with effective rates 100.00%). Metabolomic analysis suggested that diarrhea mainly affect the levels of taurocholate, DL-lactate, LysoPCs, and intestinal flora-related metabolites, trimethylamine N-oxide; however, PPL improved liver function and intestinal barrier integrity by modulating the levels of DL-lactate, LysoPC (18:0/0:0) and bilirubin, which eventually attenuated neonatal calf diarrhea. It also suggested that the therapeutic effect of PPL is related to those differential metabolites in diarrheal calves. CONCLUSIONS: The results showed that 0.4 g/kg BW PPL could restore the clinical score of diarrhea calves by improving the blood indexes, biochemical indexes, and blood metabolites. And it is a potential medicine for the treatment of calf diarrhea.


Assuntos
Pueraria , Animais , Bovinos , Diarreia/tratamento farmacológico , Diarreia/veterinária , Antibacterianos , Ácido Láctico , Metabolômica
13.
Vet Sci ; 10(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37505837

RESUMO

This study evaluated the protective effect of Bacillus subtilis HH2 on beagles orally challenged with enterotoxigenic Escherichia coli (ETEC). We assessed the physiological parameters and the severity of diarrhea, as well as the changes in three serum immunoglobulins (IgG, IgA, and IgM), plasma diamine oxidase (DAO), D-lactate (D-LA), and the fecal microbiome. Feeding B. subtilis HH2 significantly reduced the severity of diarrhea after the ETEC challenge (p < 0.05) and increased serum levels of IgG, IgA, and IgM (p < 0.01). B. subtilis HH2 administration also reduced serum levels of DAO at 48 h after the ETEC challenge (p < 0.05), but no significant changes were observed in D-LA (p > 0.05). Oral ETEC challenge significantly reduced the richness and diversity of gut microbiota in beagles not pre-fed with B. subtilis HH2 (p < 0.05), while B. subtilis HH2 feeding and oral ETEC challenge significantly altered the gut microbiota structure of beagles (p < 0.01). Moreover, 14 days of B. subtilis HH2 feeding reduced the relative abundance of Deinococcus-Thermus in feces. This study reveals that B. subtilis HH2 alleviates diarrhea caused by ETEC, enhances non-specific immunity, reduces ETEC-induced damage to the intestinal mucosa, and regulates gut microbiota composition.

14.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446776

RESUMO

Streptococcus agalactiae is a significant pathogen that can affect both human beings and animals. The extensive current use of antibiotics has resulted in antibiotic resistance. In our previous research, we found that zinc oxide quantum dots (ZnO QDs) had inhibitory effects on antibiotic-resistant microorganisms. In this study, a strain of Streptococcus agalactiaeWJYT1 with a broad antibiotic-resistant spectrum was isolated and identified from Lama glama at Sichuan Agricultural University Teaching Animal Hospital. The genome for the resistance and virulence genes was analyzed. Additionally, the antibacterial effects and anti-virulence mechanism of ZnO QDs for S. agalactiaeWJYT1 were investigated. The results showed that the genome of S. agalactiaeWJYT1 is 1,943,955 bp, containing 22 resistance genes and 95 virulence genes. ZnO QDs have a good antibacterial effect against S. agalactiaeWJYT1 by reducing bacterial growth and decreasing the expression of virulence genes, including bibA, hylB, sip, and cip, which provides a novel potential treatment for S. agalactiae.


Assuntos
Camelídeos Americanos , Pontos Quânticos , Infecções Estreptocócicas , Óxido de Zinco , Humanos , Animais , Streptococcus agalactiae , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia
15.
Front Microbiol ; 14: 1141418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234544

RESUMO

Introduction: Proteus mirabilis is a multi-host pathogen that causes diseases of varying severity in a wide range of mammals, including humans. Proteus mirabilis is resistant to multiple antibiotics and has acquired the ability to produce expanded spectrum of ß-lactamases, leading to serious public health problems. However, the available information on P. mirabilis isolated from feces of dogs, is still poorly understood, as is the correlation between its virulence-associated genes (VAGs) and antibiotic resistance genes (ARGs). Method: In this study, we isolated 75 strains of P. mirabilis from 241 samples, and investigated the swarming motility, biofilm formation, antimicrobial resistance (AMR), distribution of VAGs and ARGs, as well as the presence of class 1, 2, and 3 integrons in these isolates. Results: Our findings suggest a high prevalence of intensive swarming motility and strong biofilm formation ability among P. mirabilis isolates. Isolates were primarily resistant to cefazolin (70.67%) and imipenem (70.67%). These isolates were found to carry ureC, FliL, ireA, zapA, ptA, hpmA, hpmB, pmfA, rsbA, mrpA, and ucaA with varying prevalence levels of 100.00, 100.00, 100.00, 98.67, 98.67, 90.67, 90.67, 90.67, 90.67, 89.33, and 70.67%, respectively. Additionally, the isolates were found to carry aac(6')-Ib, qnrD, floR, blaCTX-M, blaCTX-M-2, blaOXA-1, blaTEM, tetA, tetB and tetM with varying prevalence levels of 38.67, 32.00, 25.33, 17.33, 16.00, 10.67, 5.33, 2.67, 1.33, and 1.33%, respectively. Among 40 MDR strains, 14 (35.00%) were found to carry class 1 integrons, 12 (30.00%) strains carried class 2 integrons, while no class 3 integrons was detected. There was a significant positive correlation between the class 1 integrons and three ARGs: blaTEM, blaCTX-M, and blaCTX-M-2. This study revealed that P. mirabilis strains isolated from domestic dogs exhibited a higher prevalence of MDR, and carried fewer VAGs but more ARGs compared to those isolated from stay dogs. Furthermore, a negative correlation was observed between VAGs and ARGs. Discussion: Given the increasing antimicrobial resistance of P. mirabilis, veterinarians should adopt a prudent approach towards antibiotics administration in dogs to mitigate the emergence and dissemination of MDR strains that pose a potential threat to public health.

16.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240199

RESUMO

Trichosporon asahii is an opportunistic pathogen that can cause severe or even fatal infections in patients with low immune function. sPLA2 plays different roles in different fungi and is also related to fungal drug resistance. However, the mechanism underlying its drug resistance to azoles has not yet been reported in T. asahii. Therefore, we investigated the drug resistance of T. asahii PLA2 (TaPLA2) by constructing overexpressing mutant strains (TaPLA2OE). TaPLA2OE was generated by homologous recombination of the recombinant vector pEGFP-N1-TaPLA2, induced by the CMV promoter, with Agrobacterium tumefaciens. The structure of the protein was found to be typical of sPLA2, and it belongs to the phospholipase A2_3 superfamily. TaPLA2OE enhanced antifungal drug resistance by upregulating the expression of effector genes and increasing the number of arthrospores to promote biofilm formation. TaPLA2OE was highly sensitive to sodium dodecyl sulfate and Congo red, indicating impaired cell wall integrity due to downregulation of chitin synthesis or degradation genes, which can indirectly affect fungal resistance. In conclusion, TaPLA2 overexpression enhanced the resistance to azoles of T. asahii by enhancing drug efflux and biofilm formation and upregulating HOG-MAPK pathway genes; therefore, it has promising research prospects.


Assuntos
Azóis , Trichosporon , Humanos , Azóis/farmacologia , Antifúngicos/farmacologia , Trichosporon/genética , Farmacorresistência Fúngica/genética , Biofilmes
17.
Vet Med Sci ; 9(3): 1134-1142, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913179

RESUMO

BACKGROUND: Adipose-derived mesenchymal stem cells (ADMSCs) and their extracellular vesicles (EVs) are a promising source of therapies for ischaemia-reperfusion (IR) because of their potent anti-inflammatory and immunomodulatory properties. OBJECTIVES: The aims of this study were to explore the therapeutic efficacy and potential mechanism of ADMSC-EVs in canine renal IR injury. METHODS: Mesenchymal stem cells (MSCs) and EVs were isolated and characterised for surface markers. A canine IR model administered with ADMSC-EVs was used to evaluate therapeutic effects on inflammation, oxidative stress, mitochondrial damage and apoptosis. RESULTS: CD105, CD90 and beta integrin ITGB were positively expressed in MSCs, while CD63, CD9 and intramembrane marker TSG101 were positively expressed in EVs. Compared with the IR model group, there was less mitochondrial damage and reduction in quantity of mitochondria in the EV treatment group. Renal IR injury led to severe histopathological lesions and significant increases in biomarkers of renal function, inflammation and apoptosis, which were attenuated by the administration of ADMSC-EVs. CONCLUSIONS: Secretion of EVs by ADMSCs exhibited therapeutic potential in renal IR injury and may lead to a cell-free therapy for canine renal IR injury. These findings revealed that canine ADMSC-EVs potently attenuate renal IR injury-induced renal dysfunction, inflammation and apoptosis, possibly by reducing mitochondrial damage.


Assuntos
Doenças do Cão , Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Animais , Cães , Rim/fisiologia , Vesículas Extracelulares/patologia , Inflamação/veterinária , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/veterinária , Traumatismo por Reperfusão/patologia , Doenças do Cão/patologia
18.
Theranostics ; 13(3): 1165-1179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793854

RESUMO

Rationale: The gut microbiota plays a significant role in the pathogenesis of inflammatory bowel disease (IBD). However, the role of Blastocystis infection and Blastocystis-altered gut microbiota in the development of inflammatory diseases and their underlying mechanisms are not well understood. Methods: We investigated the effect of Blastocystis ST4 and ST7 infection on the intestinal microbiota, metabolism, and host immune responses, and then explored the role of Blastocystis-altered gut microbiome in the development of dextran sulfate sodium (DSS)-induced colitis in mice. Results: This study showed that prior colonization with ST4 conferred protection from DSS-induced colitis through elevating the abundance of beneficial bacteria, short-chain fatty acid (SCFA) production and the proportion of Foxp3+ and IL-10-producing CD4+ T cells. Conversely, prior ST7 infection exacerbated the severity of colitis by increasing the proportion of pathogenic bacteria and inducing pro-inflammatory IL-17A and TNF-α-producing CD4+ T cells. Furthermore, transplantation of ST4- and ST7-altered microbiota resulted in similar phenotypes. Conclusions: Our data showed that ST4 and ST7 infection exert strikingly differential effects on the gut microbiota, and these could influence the susceptibility to colitis. ST4 colonization prevented DSS-induced colitis in mice and may be considered as a novel therapeutic strategy against immunological diseases in the future, while ST7 infection is a potential risk factor for the development of experimentally induced colitis that warrants attention.


Assuntos
Blastocystis , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Animais , Camundongos , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/patologia
19.
Acta Vet Scand ; 65(1): 4, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737784

RESUMO

BACKGROUND: The emergence of multidrug resistance among enterococci makes effective treatment of enterococcal infections more challenging. Giant pandas (Ailuropoda melanoleuca) are vulnerable to oral trauma and lesions as they feast on bamboo. Enterococci may contaminate such oral lesions and cause infection necessitating treatment with antibiotics. However, few studies have focused on the virulence and drug resistance of oral-derived enterococci, including Enterococcus faecium, in giant pandas. In this study, we analyzed the prevalence of 8 virulence genes and 14 drug resistance genes in E. faecium isolates isolated from saliva samples of giant pandas held in captivity in China and examined the antimicrobial drug susceptibility patterns of the E. faecium isolates. RESULTS: Twenty-eight isolates of E. faecium were successfully isolated from the saliva samples. Four virulence genes were detected, with the acm gene showing the highest prevalence (89%). The cylA, cpd, esp, and hyl genes were not detected. The isolated E. faecium isolates possessed strong resistance to a variety of drugs; however, they were sensitive to high concentrations of aminoglycosides. The resistance rates to vancomycin, linezolid, and nitrofurantoin were higher than those previously revealed by similar studies in China and other countries. CONCLUSIONS: The findings of the present study indicate the drugs of choice for treatment of oral E. faecium infection in the giant panda.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Ursidae , Animais , Enterococcus faecium/genética , Virulência/genética , Antibacterianos/farmacologia , Fatores de Virulência/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana/veterinária , Enterococcus , Infecções por Bactérias Gram-Positivas/veterinária
20.
Am J Reprod Immunol ; 89(1): e13653, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373212

RESUMO

The overabundant populations of wildlife have caused many negative impacts, such as human-wildlife conflicts and ecological degradation. The existing approaches like injectable immunocontraceptive vaccines and lethal methods have limitations in many aspects, which has prompted the advancement of oral immunocontraceptive vaccine. There is growing interest in oral immunocontraceptive vaccines for reasons including high immunization coverage, easier administration, frequent boosting, the ability to induce systemic and mucosal immune responses, and cost-effectiveness. Delivery systems have been developed to protect oral antigens and enhance the immunogenicity, including live vectors, microparticles and nanoparticles, bacterial ghosts, and mucosal adjuvants. However, currently, no effective oral immunocontraceptive vaccine is available for field trials because of the enormous development challenges, including biological and physicochemical barriers of the gastrointestinal tract, mucosal tolerance, pre-existing immunity, antigen residence time in the small intestine, species specificity and other safety issues. To overcome these challenges, this article summarizes achievements in delivery systems and contraceptive antigens in oral immunocontraceptive vaccines and explores the potential barriers for future vaccine design and application.


Assuntos
Vacinas , Humanos , Anticoncepção , Antígenos , Adjuvantes Imunológicos , Anticoncepcionais , Imunidade nas Mucosas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA