Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 8(1): 415, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875468

RESUMO

CD4+ T cells, particularly IL-17-secreting helper CD4+ T cells, play a central role in the inflammatory processes underlying autoimmune disorders. Eukaryotic Elongation Factor 2 Kinase (eEF2K) is pivotal in CD8+ T cells and has important implications in vascular dysfunction and inflammation-related diseases such as hypertension. However, its specific immunological role in CD4+ T cell activities and related inflammatory diseases remains elusive. Our investigation has uncovered that the deficiency of eEF2K disrupts the survival and proliferation of CD4+ T cells, impairs their ability to secrete cytokines. Notably, this dysregulation leads to heightened production of pro-inflammatory cytokine IL-17, fosters a pro-inflammatory microenvironment in the absence of eEF2K in CD4+ T cells. Furthermore, the absence of eEF2K in CD4+ T cells is linked to increased metabolic activity and mitochondrial bioenergetics. We have shown that eEF2K regulates mitochondrial function and CD4+ T cell activity through the upregulation of the transcription factor, signal transducer and activator of transcription 3 (STAT3). Crucially, the deficiency of eEF2K exacerbates the severity of inflammation-related diseases, including rheumatoid arthritis, multiple sclerosis, and ulcerative colitis. Strikingly, the use of C188-9, a small molecule targeting STAT3, mitigates colitis in a murine immunodeficiency model receiving eEF2K knockout (KO) CD4+ T cells. These findings emphasize the pivotal role of eEF2K in controlling the function and metabolism of CD4+ T cells and its indispensable involvement in inflammation-related diseases. Manipulating eEF2K represents a promising avenue for novel therapeutic approaches in the treatment of inflammation-related disorders.


Assuntos
Quinase do Fator 2 de Elongação , Interleucina-17 , Camundongos , Animais , Interleucina-17/genética , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Inflamação/genética , Linfócitos T CD4-Positivos
2.
J Med Virol ; 95(7): e28957, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37465969

RESUMO

Nucleus accumbens-associated protein 1 (NAC1), a transcriptional cofactor, has been found to play important roles in regulating regulatory T cells, CD8+ T cells, and antitumor immunity, but little is known about its effects on T-cell memory. In this study, we found that NAC1 expression restricts memory formation of CD4+ T cells during viral infection. Analysis of CD4+ T cells from wild-type (WT) and NAC1-deficient (-/- ) mice showed that NAC1 is essential for T-cell metabolism, including glycolysis and oxidative phosphorylation, and supports CD4+ T-cell survival in vitro. We further demonstrated that a deficiency of NAC1 downregulates glycolysis and correlates with the AMPK-mTOR pathway and causes autophagy defective in CD4+ T cells. Loss of NAC1 reduced the expression of ROCK1 and the phosphorylation and stabilization of BECLIN1. However, a forced expression of ROCK1 in NAC1-/- CD4+ T cells restored autophagy and the activity of the AMPK-mTOR pathway. In animal experiments, adoptively transferred NAC1-/- CD4+ T cells or NAC1-/- mice challenged with VACV showed enhanced formation of VACV-specific CD4+ memory T cells compared to adoptively transferred WT CD4+ T cells or WT mice. This memory T-cell formation enhancement was abrogated by forcing expression of ROCK1. Our study reveals a novel role for NAC1 as a suppressor of CD4+ T-cell memory formation and suggests that targeting NAC1 could be a new approach to promoting memory CD4+ T-cell development, which is critical for an effective immune response against pathogens.


Assuntos
Proteínas Quinases Ativadas por AMP , Linfócitos T CD8-Positivos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD4-Positivos , Sobrevivência Celular , Memória Imunológica , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo
3.
Pathogens ; 12(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111464

RESUMO

T cells are essential to cell-mediated immunity during bacterial, viral, and fungal infections, and immune-related diseases [...].

4.
Pathogens ; 12(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839596

RESUMO

For the past three years, COVID-19 has become an increasing global health issue. Adaptive immune cells, especially T cells, have been extensively investigated in regard to SARS-CoV-2 infection. However, human health and T cell responses are also impacted by many other pathogens and chronic diseases. We have summarized T cell performance during SARS-CoV-2 coinfection with other viruses, bacteria, and parasites. Furthermore, we distinguished if those altered T cell statuses under coinfection would affect their clinical outcomes, such as symptom severity and hospitalization demand. T cell alteration in diabetes, asthma, and hypertension patients with SARS-CoV-2 infection was also investigated in our study. We have summarized whether changes in T cell response influence the clinical outcome during comorbidities.

5.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36150745

RESUMO

BACKGROUND: T cell-mediated antitumor immunity has a vital role in cancer prevention and treatment; however, the immune-suppressive tumor microenvironment (TME) constitutes a significant contributor to immune evasion that weakens antitumor immunity. Here, we explore the relationship between nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the BTB (broad-complex, Tramtrack, bric a brac)/POZ (Poxvirus, and Zinc finger) gene family, and the TME. METHODS: Adoptive cell transfer (ACT) of mouse or human tumor antigen (Ag)-specific CD8+ cytotoxic T lymphocytes (CTLs) was tested in an immunocompetent or immunodeficient mouse model of melanoma with or without expression of NAC1. The effects of NAC1 expression on immune evasion in tumor cells were assessed in vitro and in vivo. CRISPR/Cas9, glycolysis analysis, retroviral transduction, quantitative real-time PCR, flow cytometric analysis, immunoblotting, database analyses were used to screen the downstream target and underlying mechanism of NAC1 in tumor cells. RESULTS: Tumorous expression of NAC1 negatively impacts the CTL-mediated antitumor immunity via lactate dehydrogenase A (LDHA)-mediated suppressive TME. NAC1 positively regulated the expression of LDHA at the transcriptional level, which led to higher accumulation of lactic acid in the TME. This inhibited the cytokine production and induced exhaustion and apoptosis of CTLs, impairing their cell-killing ability. In the immunocompetent and immunodeficient mice, NAC1 depleted melanoma tumors grew significantly slower and had an elevated infiltration of tumor Ag-specific CTLs following ACT, compared with the control groups. CONCLUSIONS: Tumor expression of NAC1 contributes substantially to immune evasion through its regulatory role in LDHA expression and lactic acid production. Thus, therapeutic targeting of NAC1 warrants further exploration as a potential strategy to reinforce cancer immunotherapy, such as the ACT of CTLs.


Assuntos
Evasão da Resposta Imune , Lactato Desidrogenase 5 , Melanoma , Proteínas do Tecido Nervoso , Proteínas Repressoras , Animais , Antígenos de Neoplasias , Citocinas , Humanos , Lactato Desidrogenase 5/metabolismo , Ácido Láctico , Melanoma/imunologia , Camundongos , Camundongos SCID , Proteínas de Neoplasias , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Microambiente Tumoral
6.
Viruses ; 14(8)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36016335

RESUMO

Nucleus accumbens-associated protein 1 (NAC1) is a transcription co-factor that has been shown to possess multiple roles in stem cell and cancer biology. However, little is known about its roles in regulation of the immune system. In the current study, we observed that expression of NAC1 impacted the survival of CD8+ T cells in vitro. NAC1-/- CD8+ T cells displayed lower metabolism, including reduced glycolysis and oxidative phosphorylation. In vivo, compared with wild-type (WT) mice, NAC1-/- mice produced a lower response to vaccinia virus (VACV) infection, and viral antigen (Ag)-specific CD8+ T cells decreased more slowly. Additionally, we observed that the NAC1-/- mice demonstrated a stronger memory formation of viral Ag-specific CD8+ T cells post-viral infection. Mechanically, we identified that compared with WT CD8+ T cells, the Interferon Regulatory Factor 4 (IRF4), a key transcription factor in T cell development, was highly expressed in NAC1-/- CD8+ T cells, insinuating that IRF4 could be a critical regulatory target of NAC1 in the memory formation of CD8+ T cells. Our results indicate that NAC1 restrains the memory formation of CD8+ T cells by modulating IRF4, and targeting NAC1 may be exploited as a new approach to boosting CD8+ T cell memory.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Animais , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vaccinia virus , Viroses/metabolismo
7.
Sci Adv ; 8(26): eabo0183, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767626

RESUMO

We report here that nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the Broad-complex, Tramtrack, Bric-a-brac/poxvirus and zinc finger (BTB/POZ) gene family, is a negative regulator of FoxP3 in regulatory T cells (Tregs) and a critical determinant of immune tolerance. Phenotypically, NAC1-/- mice showed substantial tolerance to the induction of autoimmunity and generated a larger amount of CD4+ Tregs that exhibit a higher metabolic profile and immune-suppressive activity, increased acetylation and expression of FoxP3, and slower turnover of this transcription factor. Treatment of Tregs with the proinflammatory cytokines interleukin-1ß or tumor necrosis factor-α induced a robust up-regulation of NAC1 but evident down-regulation of FoxP3 as well as the acetylated FoxP3. These findings imply that NAC1 acts as a trigger of the immune response through destabilization of Tregs and suppression of tolerance induction, and targeting of NAC1 warrants further exploration as a potential tolerogenic strategy for treatment of autoimmune disorders.

8.
Sci Adv ; 8(5): eabl9783, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108044

RESUMO

eEF-2K has important roles in stress responses and cellular metabolism. We report here a previously unappreciated but critical role of eEF-2K in regulating the fate and cytocidal activity of CD8+ T cells. CD8+ T cells from eEF-2K KO mice were more proliferative but had lower survival than their wild-type counterparts after their activation, followed by occurrence of premature senescence and exhaustion. eEF-2K KO CD8+ T cells were more metabolically active and showed hyperactivation of the Akt-mTOR-S6K pathway. Loss of eEF-2K substantially impaired the activity of CD8+ T cells. Furthermore, the antitumor efficacy and tumor infiltration of the CAR-CD8+ T cells lacking eEF-2K were notably reduced as compared to the control CAR-CD8+ T cells. Thus, eEF-2K is critically required for sustaining the viability and function of cytotoxic CD8+ T cells, and therapeutic augmentation of this kinase may be exploited as a novel approach to reinforcing CAR-T therapy against cancer.


Assuntos
Linfócitos T CD8-Positivos , Quinase do Fator 2 de Elongação/metabolismo , Neoplasias , Animais , Camundongos , Neoplasias/terapia , Fatores de Alongamento de Peptídeos
9.
Front Mol Biosci ; 8: 727863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532346

RESUMO

Eukaryotic Elongation Factor-2 Kinase (eEF2K) acts as a negative regulator of protein synthesis, translation, and cell growth. As a structurally unique member of the alpha-kinase family, eEF2K is essential to cell survival under stressful conditions, as it contributes to both cell viability and proliferation. Known as the modulator of the global rate of protein translation, eEF2K inhibits eEF2 (eukaryotic Elongation Factor 2) and decreases translation elongation when active. eEF2K is regulated by various mechanisms, including phosphorylation through residues and autophosphorylation. Specifically, this protein kinase is downregulated through the phosphorylation of multiple sites via mTOR signaling and upregulated via the AMPK pathway. eEF2K plays important roles in numerous biological systems, including neurology, cardiology, myology, and immunology. This review provides further insights into the current roles of eEF2K and its potential to be explored as a therapeutic target for drug development.

10.
Front Immunol ; 12: 652687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868291

RESUMO

T cells undergo metabolic reprogramming and multiple biological processes to satisfy their energetic and biosynthetic demands throughout their lifespan. Several of these metabolic pathways result in the generation of reactive oxygen species (ROS). The imbalance between ROS generation and scavenging could result in severe damage to the cells and potential cell death, ultimately leading to T cell-related diseases. Interestingly, ROS play an essential role in T cell immunity. Here, we introduce the important connectivity between T cell lifespan and the metabolic reprogramming among distinct T cell subsets. We also discuss the generation and sources of ROS production within T cell immunity as well as highlight recent research concerning the effects of ROS on T cell activities.


Assuntos
Metabolismo Energético , Imunidade Celular , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Diferenciação Celular , Humanos , Ativação Linfocitária/imunologia , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Oxirredução , Fosforilação Oxidativa , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timo
11.
Viruses ; 13(5)2021 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923025

RESUMO

The viral antigen (Ag)-specific CD8+ cytotoxic T lymphocytes (CTLs) derived from pluripotent stem cells (PSCs), i.e., PSC-CTLs, have the ability to suppress the human immunodeficiency virus (HIV) infection. After adoptive transfer, PSC-CTLs can infiltrate into the local tissues to suppress HIV replication. Nevertheless, the mechanisms by which the viral Ag-specific PSC-CTLs elicit the antiviral response remain to be fully elucidated. In this study, we generated the functional HIV-1 Gag epitope SL9-specific CTLs from the induced PSC (iPSCs), i.e., iPSC-CTLs, and investigated the suppression of SL9-specific iPSC-CTLs on viral replication and the protection of CD4+ T cells. A chimeric HIV-1, i.e., EcoHIV, was used to produce HIV replication in mice. We show that adoptive transfer of SL9-specific iPSC-CTLs greatly suppressed EcoHIV replication in the peritoneal macrophages and spleen in the animal model. Furthermore, we demonstrate that the adoptive transfer significantly reduced expression of PD-1 on CD4+ T cells in the spleen and generated persistent anti-HIV memory T cells. These results indicate that stem cell-derived viral Ag-specific CTLs can robustly accumulate in the local tissues to suppress HIV replication and prevent CD4+ T cell exhaustion through reduction of PD-1 expression.


Assuntos
Antígenos Virais/imunologia , HIV/genética , HIV/imunologia , Receptor de Morte Celular Programada 1/genética , Linfócitos T Citotóxicos/virologia , Replicação Viral/genética , Replicação Viral/imunologia , Transferência Adotiva , Animais , Antígenos Virais/metabolismo , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , HIV/fisiologia , Infecções por HIV/imunologia , Humanos , Células-Tronco Pluripotentes Induzidas , Células T de Memória/imunologia , Camundongos , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Citotóxicos/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
12.
Immunol Cell Biol ; 99(4): 351-360, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33141986

RESUMO

Over the past decade, autophagy has emerged as a critical regulatory mechanism of the immune system through critically controlling various aspects of T cell biology and determining the fate of different T cell subsets. Autophagy maintains T cell development and survival by regulating the degradation of organelles and apoptotic proteins. The autophagic process also impacts the formation of memory T cells. Alteration of autophagy in T cells may lead to a variety of pathological conditions such as inflammation, autoimmune diseases and cancer. In this review, we discuss how autophagy impacts T cell differentiation, survival and memory, and its implication in immunotherapy for various diseases.


Assuntos
Autofagia , Ativação Linfocitária , Diferenciação Celular , Imunoterapia , Subpopulações de Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA