Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(6): 7317-7326, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305907

RESUMO

Designing giant-molecule acceptors is deemed as an up-and-coming strategy to construct stable organic solar cells (OSCs) with high performance. Herein, two giant dimeric acceptors, namely, DYV and DYFV, have been designed and synthesized by linking two Y-series derivatives with a vinyl unit. DYFV exhibits more red-shifted absorption, down-shifted energy levels, and enhanced intermolecular packing than DYV because the intramolecular noncovalent interaction (H···F) of DYFV leads to better coplanarity of the backbone. The D18:DYFV film owns a distinct nanofibrous nanophase separation structure, a more dominant face-on orientation, and more balanced carrier mobilities. Therefore, the D18:DYFV OSC achieves a higher photoelectron conversion efficiency of 17.88% and a longer-term stability with a t80 over 45,000 h compared with the D18:DYV device. The study demonstrates that the intramolecular noncovalent interaction is a superior strategy to design giant-molecule acceptors and boost the photovoltaic performance and stability of the OSCs.

2.
ACS Appl Mater Interfaces ; 15(41): 48255-48263, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37792498

RESUMO

Most polymer acceptors have been designed by applying a D (electron-rich unit)-A (electron-deficient unit) strategy, which are principally processed with halogenated solvents to fabricate all-polymer solar cells (all-PSCs). Two novel polymer acceptors, containing an A-A type backbone, were designed and synthesized, which can be readily dissolved in o-xylene. The polymer PY-FBTA, comprising a Y6 derivative as the first A unit and a benzotriazole derivative as the second A unit, shows smaller dihedral angles in the backbone, stronger molecular interactions, higher LUMO level, more complementary absorption spectrum, and better morphology with PM6 than the polymer PY-DPP comprising a diketopyrrolopyrrole derivative as the second A unit. Accordingly, the PM6:PY-FBTA all-PSC achieves a higher PCE of 13.95% than the all-PSC based on PM6:PY-DPP (9.51%) for thoroughly improved Jsc (22.34 mA cm-2), Voc (0.963 V), and FF (64.84%) values, which are fabricated with o-xylene as the solvent. This work demonstrates that the A-A structure is a desirable strategy for designing polymer acceptors for efficient all-PSCs prepared with nonhalogenated solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA