Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23871, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38223722

RESUMO

Low-cost aqueous alkaline etching has been widely adopted for monocrystalline silicon surface texturing in current industrial silicon solar cells. However, conventional alkaline etching can only prepare upright pyramid structures on mono-crystalline silicon surfaces. This study demonstrates for the first time the use of ethylene glycol butyl ether (EGBE) to regulate aqueous anisotropic alkaline etching and prepare inverted pyramid structures on monocrystalline silicon surfaces. Acidic metal-catalyzed etching solutions are not the best choice for monocrystalline silicon due to their inherent disadvantages, such as noble metal pollution and relatively high costs. The one-step method to produce the inverted pyramid structures by using alkaline etch with EGBE additive is simple and inexpensive, does not generate noble metal pollution, and especially compatible with current industrial silicon solar cell production lines. With the use of a sodium hydroxide (NaOH) solution containing a low-cost additive, inverted pyramid structures can be prepared on mono-crystalline silicon surface in a short time. This method is suitable for various types of silicon wafers and has great potential for industrial solar cell applications.

2.
RSC Adv ; 11(36): 22473-22478, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480843

RESUMO

Surface patterning without requiring expensive facilities and complex procedures is a major scientific and technological challenge. We report a simple surface patterning strategy on a silicon wafer surface. This strategy, termed galvanic microcontact imprinting lithography (GMIL), is based on the spontaneous galvanic oxidation of silicon due to the electrically coupled silicon/gold mold with lithographically defined patterns. The galvanic induced silicon oxide pattern can be selectively removed in dilute HF solution or serve as a robust etchant resist in alkaline solution, enabling the formation of regular silicon microstructures on the silicon surface, affording an accessible, simple and cheap surface patterning method with no requirement of expensive and sophisticated instrumentation and facilities. These results may open exciting prospects for next-generation low-cost lithographic techniques.

3.
Front Chem ; 7: 206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001523

RESUMO

Solar water splitting represents one of the most promising strategies in the quest for clean and renewable energy. However, low conversion efficiency, use of sacrificial agents, and external bias for current water splitting system limit its practical application. Here, a gold-sensitized Si/ZnOcore/shell nanowire photoelectrochemical (PEC) cell is reported for efficient solar water oxidation. We demonstrated gold-sensitized n-Si/n-ZnO nanowire arrays exhibited higher energy conversion efficiency than gold-sensitized p-Si/n-ZnO nanowire arrays due to the favorable energy-band alignment characteristics. Without any assistance from an external electrical source and sacrificial reagents, gold-sensitized n-Si/n-ZnO core/shell nanowire array photoanode achieved unbiased water splitting under simulated solar light illumination. This method opens a promising venue to cost-efficient production of solar fuels.

4.
Nanotechnology ; 26(37): 375401, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26303032

RESUMO

Realization of broadband optical absorption enhancement in thin film c-Si solar cells is essential for improving energy conversion efficiency and reducing cost. Here, we demonstrate the fabrication of randomly arranged silicon nanorocket (SiNR) arrays as a new light trapping structure design for thin film silicon solar cells. The optical absorption of the randomly arranged SiNR arrays is investigated via finite-difference-frequency-domain (FDTD) simulation. Our calculations reveal that the light trapping structures facilitate the coupling of incident sunlight into the resonant modes and lead to significant photon absorption enhancement across a wide solar spectrum, resulting in ultimate efficiencies superior to nanowire and nanohole arrays with the same thickness. Our findings indicate that the randomly arranged SiNR arrays fabricated by the simple self-assembly and etching approach can have a significant impact on performance improvement in thin film silicon solar cells.

5.
Nano Lett ; 14(8): 4212-9, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25036852

RESUMO

Inspired by metal corrosion in air, we demonstrate that metal-catalyzed electroless etching (MCEE) of silicon can be performed simply in aerated HF/H2O vapor for facile fabrication of three-dimensional silicon nanostructures such as silicon nanowires (SiNW) arrays. Compared to MCEE commonly performed in aqueous HF solution, the present pseudo gas phase etching offers exceptional simplicity, flexibility, environmental friendliness, and scalability for the fabrication of three-dimensional silicon nanostructures with considerable depths because of replacement of harsh oxidants such as H2O2 and AgNO3 by environmental-green and ubiquitous oxygen in air, minimum water consumption, and full utilization of HF.

6.
Sci Rep ; 4: 3667, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24413157

RESUMO

Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

7.
Adv Mater ; 26(9): 1410-3, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24323873

RESUMO

Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate.

8.
Nano Lett ; 14(1): 18-23, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24341833

RESUMO

We report the facile fabrication of three-dimensional (3D) silicon/hematite core/shell nanowire arrays decorated with gold nanoparticles (AuNPs) and their potential application for sunlight-driven solar water splitting. The hematite and AuNPs respectively play crucial catalytic and plasmonic photosensitization roles, while silicon absorbs visible light and generates high photocurrent. Under simulated solar light illumination, solar water splitting with remarkable efficiency is achieved with no external bias applied. Such a nanocomposite photoanode design offers great promise for unassisted sunlight-driven water oxidation, and further stability and efficiency improvements to the device will lead to exciting prospects for practical solar water splitting and artificial photosynthesis.

9.
Angew Chem Int Ed Engl ; 50(42): 9861-5, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21905189

RESUMO

Nanowire solar cells: Pt nanoparticle (PtNP) decorated C/Si core/shell nanowire photoelectrochemical solar cells show high conversion efficiency of 10.86 % and excellent stability in aggressive electrolytes under 1-sun AM 1.5 G illumination. Superior device performance is achieved by improved surface passivation of the nanowires by carbon coating and enhanced interfacial charge transfer by PtNPs.


Assuntos
Fontes de Energia Elétrica , Nanofios/química , Silício/química , Energia Solar , Carbono/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Processos Fotoquímicos , Platina/química , Propriedades de Superfície
10.
Adv Mater ; 23(2): 198-215, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-20931630

RESUMO

Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.


Assuntos
Fontes de Energia Elétrica , Nanofios/química , Silício/química , Energia Solar , Nanotecnologia , Processos Fotoquímicos
11.
J Am Chem Soc ; 132(20): 6872-3, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20426468

RESUMO

We demonstrate Si nanohole arrays as a superior sunlight-absorbing nanostructure for photovoltaic solar cell applications. Under 1 sun AM1.5G illumination, a Si nanohole solar cell with p-n junctions via P diffusion exhibited a open-circuit voltage of 566.6 mV, a short-circuit current density of 32.2 mA/cm(2), and a remarkable power conversion efficiency of 9.51%, which is higher than that of its counterparts based on Si nanowires, planar Si, and pyramid-textured Si. The nanohole array geometry presents a novel and viable method fo cost-efficient solar energy conversion.

12.
Nano Lett ; 9(11): 3704-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19807069

RESUMO

High-density aligned n-type silicon nanowire (SiNW) arrays decorated with discrete 5-10 nm platinum nanoparticles (PtNPs) have been fabricated by aqueous electroless Si etching followed by an electroless platinum deposition process. Coating of PtNPs on SiNW sidewalls yielded a substantial enhancement in photoconversion efficiency and an apparent energy conversion efficiency of up to 8.14% for the PtNP-decorated SiNW-based photoelectrochemical solar cell using a liquid electrolyte containing Br(-)/Br(2) redox couple. The results demonstrate PtNP-decorated SiNWs to be a promising hybrid system for solar energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA