RESUMO
Eight new platinum(II) complexes Pt1-Pt8 with substituted 3(2'benzimidazolyl) coumarins were successfully synthesized and characterized by single crystal X-ray diffraction analysis, nuclear magnetic resonance spectroscopy (NMR), electrospray ionization-mass spectrometry (ESI-MS), infrared spectrophotometry (IR) and elemental analysis. Crystallographic data of these Pt1-Pt8 complexes showed that the Pt(II) has distorted four-coordinated square planar geometry. Pt1-Pt8 were found to display high cytotoxic activity in vitro against the cisplatin-resistant SK-OV-3/DDP cancer cells with a low IC50 from 1.01-10.32⯵M, but low cytotoxicity on the normal HL-7702 cells. Further studies revealed that Pt1-Pt3 induced apoptosis in SK-OV-3/DDP cancer cells via mitochondria dysfunction signaling pathways. Our findings also indicated that Pt1 was a telomerase inhibitor targeting c-myc promoter elements.
Assuntos
Cumarínicos/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Platina/química , Telomerase/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Telomerase/antagonistas & inibidoresRESUMO
Microbial lipase from Candida rugosa (Amano AY-30) has good transesterification activity and can be used for biodiesel production. In this study, polyvinylidene fluoride (PVDF) membrane was grafted with 1,4-diaminobutane and activated by glutaraldehyde for C. rugosa lipase immobilization. After immobilization, the biocatalytic membrane was used for producing biodiesel from soybean oil and methanol via transesterification. Response Surface Methodology (RSM) in combination with a 5-level-5-factor central composite rotatable design (CCRD) was employed to evaluate the effects of reaction time, reaction temperature, enzyme amount, substrate molar ratio and water content on the yield of soybean oil methyl ester. By ridge max analysis, the predicted and experimental yields under the optimum synthesis conditions were 97% and 95%, respectively. The lipase-immobilized PVDF membrane showed good reuse ability for biodiesel production, enabling operation for at least 165 h during five reuses of the batch, without significant loss of activity.