Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(9): 7890-7895, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376475

RESUMO

The physical and chemical properties of metal oxide nanocrystals are closely related to their exposed facets, so the study on facet structures is helpful to develop facet/morphology-property relationships and rationally design nanostructures with desired properties. In this study, wurtzite ZnO nanorods with different aspect ratios were prepared by controlling the Zn2+/OH- ratio, temperature and time in hydrothermal processes. An 17O solid-state NMR study was performed on these nanorods, after surface 17O labeling, to explore the relationship of the 17O NMR signals with the local surface structure of different exposed facets, i.e., nonpolar (101̄0) and polar (0002) facets. It is observed that, one of the signals, the sharp component of a peak at -18.8 ppm, comprises the contribution from the oxygen ions on the polar (0002) facets, in addition to that from nonpolar (101̄0) facets, which is confirmed by 17O NMR spectra of ZnO nanorods with controlled aspect ratios and different thermal treatment conditions. This is important for accurately interpreting the 17O NMR signal of ZnO-containing materials, especially when studying the facet-related mechanisms. The method applied here can also be extended to study the facet-dependent properties of other faceted oxide nanocrystals.

2.
Chem Commun (Camb) ; 60(24): 3275-3278, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421011

RESUMO

Interactions of ZnO nanorods with water and the dynamic migration characteristic of surface oxygen species are important in controlling its structure and catalytic properties. Here, we apply 17O solid-state NMR spectroscopy to investigate the interactions, as well as oxygen ion diffusion properties of ZnO nanorods under different conditions.

3.
J Am Chem Soc ; 146(10): 6591-6603, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38420768

RESUMO

Polymer-in-ceramic composite solid electrolytes (PIC-CSEs) provide important advantages over individual organic or inorganic solid electrolytes. In conventional PIC-CSEs, the ion conduction pathway is primarily confined to the ceramics, while the faster routes associated with the ceramic-polymer interface remain blocked. This challenge is associated with two key factors: (i) the difficulty in establishing extensive and uninterrupted ceramic-polymer interfaces due to ceramic aggregation; (ii) the ceramic-polymer interfaces are unresponsive to conducting ions because of their inherent incompatibility. Here, we propose a strategy by introducing polymer-compatible ionic liquids (PCILs) to mediate between ceramics and the polymer matrix. This mediation involves the polar groups of PCILs interacting with Li+ ions on the ceramic surfaces as well as the interactions between the polar components of PCILs and the polymer chains. This strategy addresses the ceramic aggregation issue, resulting in uniform PIC-CSEs. Simultaneously, it activates the ceramic-polymer interfaces by establishing interpenetrating channels that promote the efficient transport of Li+ ions across the ceramic phase, the ceramic-polymer interfaces, and the intervening pathways. Consequently, the obtained PIC-CSEs exhibit high ionic conductivity, exceptional flexibility, and robust mechanical strength. A PIC-CSE comprising poly(vinylidene fluoride) (PVDF) and 60 wt % PCIL-coated Li3Zr2Si2PO12 (LZSP) fillers showcasing an ionic conductivity of 0.83 mS cm-1, a superior Li+ ion transference number of 0.81, and an elongation of ∼300% at 25 °C could be produced on meter-scale. Its lithium metal pouch cells show high energy densities of 424.9 Wh kg-1 (excluding packing films) and puncture safety. This work paves the way for designing PIC-CSEs with commercial viability.

4.
RSC Adv ; 13(31): 21271-21276, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37456539

RESUMO

The morphologies and exposed surfaces of ceria nanocrystals are important factors in determining their performance. In order to establish a structure-property relationship for ceria nanomaterials, it is essential to have materials with well-defined morphologies and specific exposed facets. This is also crucial for acquiring high resolution 17O solid-state NMR spectra. In this study, we explore the synthesis conditions for preparing CeO2 nanorods with exposed (111) facets. The effects of alkali concentration, hydrothermal temperature and time, cerium source and oxidation agent are investigated and optimal synthesis conditions are found. The resulting CeO2 nanorods show very narrow 17O NMR peaks for the oxygen ions in the first, second and third layers, providing a foundation for future research on mechanisms involving ceria materials using 17O solid-state NMR spectroscopy.

5.
Nat Commun ; 14(1): 513, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720869

RESUMO

The hydrogenation of CO2 or CO to single organic product has received widespread attentions. Here we show a highly efficient and selective catalyst, Mo3S4@ions-ZSM-5, with molybdenum sulfide clusters ([Mo3S4]n+) confined in zeolitic cages of ZSM-5 molecular sieve for the reactions. Using continuous fixed bed reactor, for CO2 hydrogenation to methanol, the catalyst Mo3S4@NaZSM-5 shows methanol selectivity larger than 98% at 10.2% of carbon dioxide conversion at 180 °C and maintains the catalytic performance without any degeneration during continuous reaction of 1000 h. For CO hydrogenation, the catalyst Mo3S4@HZSM-5 exhibits a selectivity to C2 and C3 hydrocarbons stably larger than 98% in organics at 260 °C. The structure of the catalysts and the mechanism of COx hydrogenation over the catalysts are fully characterized experimentally and theorectically. Based on the results, we envision that the Mo3S4@ions-ZSM-5 catalysts display the importance of active clusters surrounded by permeable materials as mesocatalysts for discovery of new reactions.

6.
Mater Horiz ; 10(1): 65-74, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477767

RESUMO

TiO2 nanomaterials, especially one-dimensional TiO2 nanofibers fabricated by electrospinning, have received considerable attention in the past two decades, for a variety of basic applications. However, their safe use and easy recycling are still hampered by the inherently subpar mechanical performance. Here, we toughened polycrystalline TiO2 nanofibers by introducing Al3+-species at the very beginning of electrospinning. The resultant long-and-continuous TiO2 nanofibers achieved a Young's modulus of 653.8 MPa, which is ca. 25-fold higher than that of conventional TiO2 nanofibers. Within each nanofiber, amorphous Al2O3-based oxide effectively hindered the coalescence of TiO2 nanocrystals and potentially repaired the surface groves. The solid-state 17O-NMR spectra further revealed the toughening strategy on a molecular scale, where relatively flexible Ti-O-Al bonds replaced rigid O-Ti-O bonds at the interfaces of TiO2 and Al2O3. Moreover, the modified TiO2 nanofibers exhibited superb sinter-resistance, without cracking over 900 °C, which was dynamically monitored by TEM. Therefore, flexible-in-rigid TiO2 fibrous mats can be facilely folded into 3D sponges through origami art. As a potential showcase, the TiO2 sponges were demonstrated as a duarable and renewable filtrator with a high filtration efficiency of 99.97% toward PM2.5 and 99.99% toward PM10 after working for 300 min. This work provides a rational strategy to produce flexible oxide nanofibers and gives an in-depth understanding of the toughening mechanism from the macro-scale to the molecular-scale.


Assuntos
Nanofibras , Nanofibras/química , Titânio/química , Filtração , Óxidos
7.
J Am Chem Soc ; 144(51): 23340-23351, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36512749

RESUMO

ZnO plays a very important role in many catalytic processes involving H2, yet the details on their interactions and H2 activation mechanism are still missing, owing to the lack of a characterization method that provides resolution at the atomic scale and follows the fate of oxide surface species. Here, we apply 17O solid-state NMR spectroscopy in combination with DFT calculations to unravel the surface structure of ZnO nanorods and explore the H2 activation process. We show that six different types of oxygen ions in the surface and subsurface of ZnO can be distinguished. H2 undergoes heterolytic dissociation on three-coordinated surface zinc and oxygen ions, while the formed hydride species migrate to nearby oxygen species, generating a second hydroxyl site. When oxygen vacancies are present, homolytic dissociation of H2 occurs and zinc hydride species form from the vacancies. Reaction mechanisms on oxide surfaces can be explored in a similar manner.


Assuntos
Óxido de Zinco , Catálise , Óxidos , Oxigênio , Zinco
8.
Chem Sci ; 13(37): 11083-11090, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320476

RESUMO

Determining the different surfaces of oxide nanocrystals is key in developing structure-property relations. In many cases, only surface geometry is considered while ignoring the influence of surroundings, such as ubiquitous water on the surface. Here we apply 17O solid-state NMR spectroscopy to explore the facet differences of morphology-controlled ceria nanocrystals considering both geometry and water adsorption. Tri-coordinated oxygen ions at the 1st layer of ceria (111), (110), and (100) facets exhibit distinct 17O NMR shifts at dry surfaces while these 17O NMR parameters vary in the presence of water, indicating its non-negligible effects on the oxide surface. Thus, the interaction between water and oxide surfaces and its impact on the chemical environment should be considered in future studies, and solid-state NMR spectroscopy is a sensitive approach for obtaining such information. The work provides new insights into elucidating the surface chemistry of oxide nanomaterials.

9.
Nat Commun ; 13(1): 6093, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241633

RESUMO

Layered double oxides (LDOs) can restore the parent layered double hydroxides (LDHs) structure under hydrous conditions, and this "memory effect" plays a critical role in the applications of LDHs, yet the detailed mechanism is still under debate. Here, we apply a strategy based on ex situ and in situ solid-state NMR spectroscopy to monitor the Mg/Al-LDO structure changes during recovery at the atomic scale. Despite the common belief that aqueous solution is required, we discover that the structure recovery can occur in a virtually solid-state process. Local structural information obtained with NMR spectroscopy shows that the recovery in aqueous solution follows dissolution-recrystallization mechanism, while the solid-state recovery is retro-topotactic, indicating a true "memory effect". The amount of water is key in determining the interactions of water with oxides, thus the memory effect mechanism. The results also provide a more environmentally friendly and economically feasible LDHs preparation route.

10.
Sci Adv ; 8(11): eabj7698, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302845

RESUMO

Solid electrolytes are highly important materials for improving safety, energy density, and reversibility of electrochemical energy storage batteries. However, it is a challenge to modulate the coordination structure of conducting ions, which limits the improvement of ionic conductivity and hampers further development of practical solid electrolytes. Here, we present a skeleton-retained cationic exchange approach to produce a high-performance solid electrolyte of Li3Zr2Si2PO12 stemming from the NASICON-type superionic conductor of Na3Zr2Si2PO12. The introduced lithium ions stabilized in under-coordination structures are facilitated to pass through relatively large conduction bottlenecks inherited from the Na3Zr2Si2PO12 precursor. The synthesized Li3Zr2Si2PO12 achieves a low activation energy of 0.21 eV and a high ionic conductivity of 3.59 mS cm-1 at room temperature. Li3Zr2Si2PO12 not only inherits the satisfactory air survivability from Na3Zr2Si2PO12 but also exhibits excellent cyclic stability and rate capability when applied to solid-state batteries. The present study opens an innovative avenue to regulate cationic occupancy and make new materials.

11.
Nat Commun ; 13(1): 707, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121754

RESUMO

The detailed information on the surface structure and binding sites of oxide nanomaterials is crucial to understand the adsorption and catalytic processes and thus the key to develop better materials for related applications. However, experimental methods to reveal this information remain scarce. Here we show that 17O solid-state nuclear magnetic resonance (NMR) spectroscopy can be used to identify specific surface sites active for CO2 adsorption on MgO nanosheets. Two 3-coordinated bare surface oxygen sites, resonating at 39 and 42 ppm, are observed, but only the latter is involved in CO2 adsorption. Double resonance NMR and density functional theory (DFT) calculations results prove that the difference between the two species is the close proximity to H, and CO2 does not bind to the oxygen ions with a shorter O···H distance of approx. 3.0 Å. Extensions of this approach to explore adsorption processes on other oxide materials can be readily envisaged.

12.
Environ Sci Technol ; 55(22): 15082-15089, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34723496

RESUMO

Layered double hydroxides (LDHs) are potential low-cost filter materials for use in fluoride removal from drinking water, but molecular-scale defluoridation mechanisms are lacking. In this research, we employed 19F solid-state NMR spectroscopy to identify fluoride sorption products on 2:1 MgAl LDH and to reveal the relationship between fluoride sorption and the LDH structure. A set of six 19F NMR peaks centered at -140, -148, -156, -163, -176, and -183 ppm was resolved. Combining quantum chemical calculations based on density function theory (DFT) and 19F{27Al} transfer of populations in double resonance (TRAPDOR) analysis, we could assign the peaks at -140, -148, -156, and -163 ppm to Al-F (F coordinated to surface Al) and those at -176 and -183 ppm to Mg-F (F coordinated to surface Mg only). Interestingly, the spectroscopic data reveal that the formation of Al-F is the predominant mode of F- sorption at low pH, whereas the formation of Mg-F is predominant at high pH (or a higher Mg/Al ratio). This finding supports the fact that the F- uptake of 2:1 MgAl LDH was nearly six times that of activated alumina at pH 9. Overall, we explicitly revealed the different roles of the surface >MgOH and >AlOH sites of LDHs in defluoridation, which explained why the use of classic activated alumina for defluoridation is limited at high pH. The findings from this research may also provide new insights into material screening for potential filters for F- removal under alkaline conditions.


Assuntos
Fluoretos , Hidróxidos , Adsorção , Óxido de Alumínio , Espectroscopia de Ressonância Magnética
13.
Chem Sci ; 12(38): 12619-12630, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703547

RESUMO

Chiral transcription from the molecular level to the macroscopic level by self-organization has been a topic of considerable interest for mimicking biological systems. Homochiral coordination polymers (CPs) are intriguing systems that can be applied in the construction of artificial helical architectures, but they have scarcely been explored to date. Herein, we propose a new strategy for the generation of superhelices of 1D CPs by introducing flexible cyclohexyl groups on the side chains to simultaneously induce interchain van der Waals interactions and chain misalignment due to conformer interconversion. Superhelices of S- or R-Tb(cyampH)3·3H2O (S-1H, R-1H) [cyampH2 = S- or R-(1-cyclohexylethyl)aminomethylphosphonic acid] were obtained successfully, the formation of which was found to follow a new type of "chain-twist-growth" mechanism that had not been described previously. The design strategy used in this work may open a new and general route to the hierarchical assembly and synthesis of helical CP materials.

14.
Angew Chem Int Ed Engl ; 60(17): 9699-9705, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33484038

RESUMO

Efficient noble-metal free electrocatalyst for oxygen evolution reaction (OER) is critical for large-scale hydrogen production via water splitting. Inspired by Nature's oxygen evolution cluster in photosystem II and the highly efficient artificial OER catalyst of NiFe layered double hydroxide (LDH), we designed an electrostatic 2D-2D assembly route and successfully synthesized a 2D LDH(+)-Birnessite(-) hybrid. The as-constructed LDH(+)-Birnessite(-) hybrid catalyst showed advanced catalytic activity and excellent stability towards OER under a close to industrial hydrogen production condition (85 °C and 6 M KOH) for more than 20 h at the current densities larger than 100 mA cm-2 . Experimentally, we found that besides the enlarged interlayer distance, the flexible interlayer NiFe LDH(+) also modulates the electronic structure of layered MnO2 , and creates an electric field between NiFe LDH(+) and Birnessite(-), wherein OER occurs with a greatly decreased overpotential. DFT calculations confirmed the interlayer LDH modulations of the OER process, attributable to the distinct electronic distributions and environments. Upshifting the Fe-3d orbitals in LDH promotes electron transfer from the layered MnO2 to LDH, significantly boosting up the OER performance. This work opens a new way to fabricate highly efficient OER catalyst for industrial water oxidation.

15.
RSC Adv ; 11(40): 25004-25009, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481043

RESUMO

Tin dioxide (SnO2) nanomaterials are important acid catalysts. It is therefore crucial to obtain details about the surface acidic properties in order to develop structure-property relationships. Herein, we apply 31P solid-state NMR spectroscopy combined with a trimethylphosphine (TMP) probe molecule, to study the facet-dependent acidity of SnO2 nanosheets and nanoshuttles. With the help of density functional theory calculations, we show that the tin cations exposed on the surfaces are Lewis acid sites and their acid strengths rely on surface geometries. As a result, the (001), (101), (110), and (100) facets can be differentiated by the 31P NMR shifts of adsorbed TMP molecules, and their fractions in different nanomaterials can be extracted according to deconvoluted 31P NMR resonances. The results provide new insights on nanosized oxide acid catalysts.

16.
ACS Appl Mater Interfaces ; 12(47): 53537-53546, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180462

RESUMO

Many metal organic frameworks (MOFs) incorporate metal oxide clusters as nodes. Node sites where linkers are missing can be catalytic sites. We now show how to dial in the number and occupancy of such sites in MIL-53 and MIL-68, which incorporate aluminum-oxide-like nodes. The methods involve modulators used in synthesis and postsynthesis reactions to control the modulator-derived groups on these sites. We illustrate the methods using formic acid as a modulator, giving formate ligands on the sites, and these can be removed to leave µ2-OH groups and open Lewis acid sites. Methanol dehydration was used as a catalytic reaction to probe these sites, with infrared spectra giving evidence of methoxide ligands as reaction intermediates. Control of node surface chemistry opens the door for placement of a variety of ligands on a wide range of metal oxide cluster nodes for dialing in reactivity and catalytic properties of a potentially immense class of structurally well-defined materials.

17.
Nat Commun ; 11(1): 5478, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127912

RESUMO

Elucidating the structure-property relationship is crucial for the design of advanced electrocatalysts towards the production of hydrogen peroxide (H2O2). In this work, we theoretically and experimentally discovered that atomically dispersed Lewis acid sites (octahedral M-O species, M = aluminum (Al), gallium (Ga)) regulate the electronic structure of adjacent carbon catalyst sites. Density functional theory calculation predicts that the octahedral M-O with strong Lewis acidity regulates the electronic distribution of the adjacent carbon site and thus optimizes the adsorption and desorption strength of reaction intermediate (*OOH). Experimentally, the optimal catalyst (oxygen-rich carbon with atomically dispersed Al, denoted as O-C(Al)) with the strongest Lewis acidity exhibited excellent onset potential (0.822 and 0.526 V versus reversible hydrogen electrode at 0.1 mA cm-2 H2O2 current in alkaline and neutral media, respectively) and high H2O2 selectivity over a wide voltage range. This study provides a highly efficient and low-cost electrocatalyst for electrochemical H2O2 production.

18.
Langmuir ; 36(35): 10404-10411, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787005

RESUMO

The crystal-facet effect of catalytic supports plays a crucial role in tailoring the physicochemical properties of active sites and the surface chemically bonded polymer can also regulate the local environment around active sites for optimizing catalytic performance. Herein, we report the effect of exposed facets of γ-Al2O3 supports and further modification by surface bonded long-chain polydimethylsiloxane (PDMS) on the properties of CrOx/γ-Al2O3 catalysts for selective oxidation of propene. The {111} facets of γ-Al2O3 stabilize "non-redox Cr3+" and promote the overall oxidation rates compared with catalysts on {110} facets of γ-Al2O3. The surface bonded PDMS, with grafting density being about 0.13 chains/nm2, endows a hydrophobic environment to facilitate the enrichment of the hydrophobic substrate and the desorption of hydrophilic products and occupies some acid sites on catalysts to limit acid-catalyzed side reactions. The inherent liquidlike nature of bonded PDMS also forms a setting that can regulate the redox ability of surface Cr species, that lead to modified activation of oxygen toward more surface adsorbed species. As a result, the modified catalysts enhance the whole oxidation process with favorable formation of epoxide product at low reaction temperatures (<225 °C). Our findings highlight the impact of surface chemically bound polydimethylsiloxane (PDMS) upon tailoring the surroundings of the catalyst surface, and that combined with facet-effect of supports can tune the reaction process toward selective ones.

19.
J Am Chem Soc ; 142(25): 11173-11182, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32459963

RESUMO

Hydrous materials are ubiquitous in the natural environment and efforts have previously been made to investigate the structures and dynamics of hydrated surfaces for their key roles in various chemical and physical applications, with the help of theoretical modeling and microscopy techniques. However, an overall atomic-scale understanding of the water-solid interface, including the effect of water on surface ions, is still lacking. Herein, we employ ceria nanorods with different amounts of water as an example and demonstrate a new approach to explore the water-surface interactions by using solid-state NMR in combination with density functional theory. NMR shifts and relaxation time analysis provide detailed information on the local structure of oxygen ions and the nature of water motion on the surface: the amount of molecularly adsorbed water decreases rapidly with increasing temperature (from room temperature to 150 °C), whereas hydroxyl groups are stable up to 150 °C, and dynamic water molecules are found to instantaneously coordinate to the surface oxygen ions. The applicability of dynamic nuclear polarization for selective detection of surface oxygen species is also compared to conventional NMR with surface selective isotopic-labeling: the optimal method depends on the feasibility of enrichment and the concentration of protons in the sample. These results provide new insight into the interfacial structure of hydrated oxide nanostructures, which is important to improve performance for various applications.

20.
ACS Omega ; 5(14): 8355-8361, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309746

RESUMO

17O solid-state NMR spectroscopy was used to study the structure of Ta2O5 nanorods for the first time. Although the observations of oxygen ions in the "bulk" part of the Ta2O5 nanorods can be achieved with conventional high-temperature enrichment with 17O2, low-temperature isotopic labeling with H2 17O generated samples whose surfaces are selectively enriched, leading to surface-only detection of oxygen species. By applying 17O-1H double-resonance NMR techniques and 1H NMR spectroscopy, surface hydroxyl species and adsorbed water can also be studied. The results form the basis for further understanding of the structure-property relationship of Ta2O5 nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA