Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 253: 154950, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091882

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are believed to regulate the progression of various cancers including colorectal cancer (CRC). However, the role and mechanism of circ_0124554 in regulating the sensitivity of CRC to radiation remain unknown. METHODS: The RNA levels of circ_0124554, LIM and SH3 protein 1 (LASP1), and methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (METTL3) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. Cell proliferation, apoptosis, migration, and invasion were investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry analysis, and transwell assay, respectively. The sensitivity of CRC cells to radiation was analyzed by cell colony formation assay. Xenograft mouse model assay was conducted to disclose the role of circ_0001023 in the sensitivity of tumors to radiation in vivo. The binding relationships among circ_0124554, miR-1184 and LASP1 were confirmed by a dual-luciferase reporter assay. m6A RNA immunoprecipitation assay was performed to identify the association of METTL3 with circ_0124554. RESULTS: Circ_0124554 expression was upregulated in CRC tissues and cells in comparison with normal colorectal tissues and cells. Circ_0124554 knockdown inhibited proliferation, migration and invasion and promoted apoptosis and radiosensitivity of CRC cells. Moreover, circ_0124554 depletion inhibited tumor formation and improved radiosensitivity in vivo. MiR-1184 was identified as a target miRNA of circ_0124554 and targeted LASP1. Additionally, LASP1 overexpression rescued circ_0124554 knockdown-mediated effects in CRC cells. METTL3 mediated m6A methylation of circ_0124554. Further, circ_0124554 overexpression attenuated METTL3 depletion-induced effects in CRC cells. CONCLUSION: m6A-modified circ_0124554 promoted CRC progression and radioresistance by inducing LASP1 expression through interaction with miR-1184.


Assuntos
Adenina/análogos & derivados , Neoplasias Colorretais , MicroRNAs , Humanos , Animais , Camundongos , Processos Neoplásicos , MicroRNAs/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Metiltransferases/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas com Domínio LIM
2.
Cancers (Basel) ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36900379

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers. Given the currently limited therapeutic options, the definition of molecular subgroups with the development of tailored therapies remains the most promising strategy. Patients with high-level gene amplification of urokinase plasminogen activator receptor (uPAR/PLAUR) have an inferior prognosis. We analyzed the uPAR function in PDAC to understand this understudied PDAC subgroup's biology better. METHODS: A total of 67 PDAC samples with clinical follow-up and TCGA gene expression data from 316 patients were used for prognostic correlations. Gene silencing by CRISPR/Cas9, as well as transfection of uPAR and mutated KRAS, were used in PDAC cell lines (AsPC-1, PANC-1, BxPC3) treated with gemcitabine to study the impact of these two molecules on cellular function and chemoresponse. HNF1A and KRT81 were surrogate markers for the exocrine-like and quasi-mesenchymal subgroup of PDAC, respectively. RESULTS: High levels of uPAR were correlated with significantly shorter survival in PDAC, especially in the subgroup of HNF1A-positive exocrine-like tumors. uPAR knockout by CRISPR/Cas9 resulted in activation of FAK, CDC42, and p38, upregulation of epithelial makers, decreased cell growth and motility, and resistance against gemcitabine that could be reversed by re-expression of uPAR. Silencing of KRAS in AsPC1 using siRNAs reduced uPAR levels significantly, and transfection of mutated KRAS in BxPC-3 cells rendered the cell more mesenchymal and increased sensitivity towards gemcitabine. CONCLUSIONS: Activation of uPAR is a potent negative prognostic factor in PDAC. uPAR and KRAS cooperate in switching the tumor from a dormant epithelial to an active mesenchymal state, which likely explains the poor prognosis of PDAC with high uPAR. At the same time, the active mesenchymal state is more vulnerable to gemcitabine. Strategies targeting either KRAS or uPAR should consider this potential tumor-escape mechanism.

3.
Environ Toxicol ; 38(6): 1347-1360, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36947452

RESUMO

BACKGROUND: Accumulating evidence suggests that circular RNAs (circRNAs) play important regulatory roles in non-small cell lung cancer (NSCLC). At present, we aimed to explore the regulatory role of has_circ_0003528 (circ_0003528) in NSCLC. METHODS: Alterations of circ_0003528 expression in NSCLC samples and cell lines were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Impacts of circ_0003528 on NSCLC cell malignant transformation were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell invasion, and tube formation assays. Epithelial-mesenchymal transition (EMT)-related markers were detected with western blotting. Pro-inflammatory cytokines were detected by Enzyme-linked immunosorbent assay (ELISA). The regulation mechanism of circ_0003528 was verified by dual-luciferase reporter and RNA pull-down assays. The tumorigenesis role of circ_0003528 was verified by animal experiments. RESULTS: Higher levels of circ_0003528 were obtained in NSCLC samples and cell lines, and patients with high circ_0003528 expression had a worse prognosis. Silence of circ_0003528 decreased xenograft growth in mouse models and induced cell apoptosis and repressed cell viability, proliferation, invasion, EMT, angiogenesis, and immune escape in NSCLC cells in vitro. Mechanistically, circ_0003528 controlled programmed cell death ligand 1 (PDL1) expression through interaction with miR-511-3p. The inhibiting impacts of circ_0003528 knockdown on NSCLC cell malignant transformation and immune escape were weakened after miR-511-3p silencing. Moreover, PDL1 overexpression partially counteracted miR-511-3p upregulation-mediated suppression on NSCLC cell malignant transformation and immune escape. CONCLUSIONS: Circ_0003528 facilitated NSCLC cell malignant transformation and immune escape through regulation of the miR-511-3p/PDL1 axis, highlighting the oncogenic role of circ_0003528 in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Transformação Celular Neoplásica/genética , Oncogenes/genética , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
4.
ACS Omega ; 8(33): 29949-29958, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38174107

RESUMO

Developing high-performance biocathodes remain one of the most challenging aspects of the microbial electrosynthesis (MES) system and the primary factor limiting its output. Herein, a hollow porous carbon (PC) fabricated with MXenes coated over an electrode was developed for MES systems to facilitate the direct delivery of CO2 to microorganisms colonized. The result highlighted that MXene@PC (Ti3C2Tx@PC) has a surface area of 434 m2/g. The Ti3C2Tx@PC MES cycle shows that in cycle 4 and cycle 5, the values are -309.2 and -352.3. Cyclic voltammetry showed that the coated electrode current response (mA) increased from -4.5 to -20.2. The substantial redox peaks of Ti3C2Tx@PC biofilms are displayed at -741, -516, and -427 mV vs Ag/AgCl, suggesting an enhanced electron transfer owing to the Ti3C2Tx@PC complex coating. Additionally, more active sites enhanced mass transfer and microbial development, resulting in a 46% rise in butyrate compared to the uncoated control. These findings demonstrate the value of PC modification as a method for MES-based product selection.

5.
Transl Lung Cancer Res ; 10(6): 2523-2538, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34295659

RESUMO

BACKGROUND: Lung cancer remains the major cause of cancer related death worldwide. The discovery of targeted therapies against activating mutations in genes like EGFR considerably improved the prognosis for a subgroup of patients but still leaves a large part without a targeted therapy. One carbon metabolism (1CM) has been investigated in several cancer entities and its increased activity has been linked to higher tumor aggressiveness and reduced prognosis. In spite of 1CM enzymes role and correlation to cancer cells progression, comprehensive analysis for the diagnostic and functional role of the complete 1CM enzymes in lung cancer has not been conducted so far. METHODS: We investigated the prognostic and functional relevance of five major 1CM factors (MTHFD2, PGDH3, SHMT2, MTHFD1 and TYMS) in the three major subclasses of lung cancer [pulmonary adenocarcinoma (AC), squamous cell lung cancer (SQCLC) and small cell lung cancer (SCLC)]. We analyzed 1CM enzymes expression and clinicopathological correlation in patient derived tissue samples of 103 AC, 183 SQCLC and 37 SCLC patients by immunohistochemistry. Furthermore, the effect of 1CM enzymes expression on lung cancer cell proliferation and the response to chemotherapy was investigated in 15 representative AC, SQCLC and SCLC cell lines. RESULTS: Expression of MTHFD2 and PGDH3 was significantly correlated to a worse overall survival only in AC patients. Cell proliferation assays resolved that all 1CM enzymes have a significant impact on cell growth in AC cell lines and are partially involved in cell proliferation in SQCLC and SCLC cell lines. In addition, expression of MTHFD2 correlated significantly with an increased pemetrexed chemoresistance. CONCLUSIONS: Expression of MTHFD2 significantly reduces the prognosis of AC patients. Furthermore, MTHFD2 expression is crucial for survival of AC cell lines and its expression correlates with resistance against Pemetrexed. As MTHFD2 is almost not expressed in healthy adult tissue, we therefore suggest that the inhibition of MTHFD2 might be a potential therapeutic strategy to surround pemetrexed resistance in AC.

6.
World J Emerg Med ; 8(2): 141-147, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458760

RESUMO

BACKGROUND: Although coagulopathy can be very common in severe traumatic shock patients, the exact incidence and mechanism remain unclear. In this study, a traumatic shock rabbit model with special abdomen injuries was developed and evaluated by examining indicators of clotting and fibrinolysis. METHODS: Forty New Zealand white rabbits were randomly divided into four groups: group 1 (sham), group 2 (hemorrhage), group 3 (hemorrhage-liver injury), and group 4 (hemorrhage-liver injury/intestinal injury-peritonitis). Coagulation was detected by thromboelastography before trauma (T0), at 1 hour (T1) and 4 hours (T2) after trauma. RESULTS: Rabbits that suffered from hemorrhage alone did not differ in coagulation capacity compared with the sham group. The clot initiations (R times) of group 3 at T1 and T2 were both shorter than those of groups 1, 2, and 4 (P<0.05). In group 4, clot strength was decreased at T1 and T2 compared with those in groups 1, 2, and 3 (P<0.05), whereas the R time and clot polymerization were increased at T2 (P<0.05). The clotting angle significantly decreased in group 4 compared with groups 2 and 3 at T2 (P<0.05). CONCLUSION: This study suggests that different abdominal traumatic shock show diverse coagulopathy in the early phase. Isolated hemorrhagic shock shows no obvious effect on coagulation. In contrast, blunt hepatic injury with hemorrhage shows hypercoagulability, whereas blunt hepatic injury with hemorrhage coupled with peritonitis caused by a ruptured intestine shows a tendency toward hypocoagulability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA