Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13326-13335, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693621

RESUMO

A key challenge in the search of new materials capable of singlet fission (SF) arises from the primary energy conservation criterion, i.e., the energy of the triplet exciton has to be half that of the singlet (E(S1) ≥ 2E(T1)), which excludes most photostable organic materials from consideration and confines the design strategy to materials with low energy triplet states. One potential way to overcome this energy requirement and improve the triplet energy is to enable a SF channel from higher energy ("hot") excitonic states (Sn) in a process called activated SF. Herein, we demonstrate that efficient activated SF is achieved in a rylene imide-based derivative acenaphth[l, 2-a]acenaphthylene diimide (AADI). This process is enabled by an increase in the energy gap to greater than 1.0 eV between the S3 and S1 states due to the incorporation of an antiaromatic pentalene unit, which leads to the emergence of anti-Kasha properties in the isolated molecule. Transient spectroscopy studies show that AADI undergoes ultrafast SF from higher singlet excited states in thin film, with excitation wavelength-dependent SF yields. The SF yield of ∼200% is observed upon higher energy excitation, and long-lived free triplets persist on the µs time scale suggesting that AADI can be used in SF-enhanced devices. Our results suggest that enlarging the Sn-S1 energy gap is an effective way to turn on the activated SF channel and shed light on the development of novel, stable SF materials with high triplet energies.

2.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38666791

RESUMO

Photoinduced symmetry-breaking charge separation (SB-CS) has been extensively observed in various oligomers and aggregates, which holds great potential for robust artificial solar energy conversion systems. It attaches great importance to the precise manipulation of interchromophore electronic coupling in realizing efficient SB-CS. The emerging studies on SB-CS suggested that it could be realized in null-excitonic aggregates, and a long-lived SB-CS state was observed, which offers an advanced platform and has gathered immense attention in the SB-CS field. Here, we unveiled the null-exciton coupling induced ultrafast SB-CS in a rigid polycyclic aromatic hydrocarbon framework, triperyleno[3,3,3]propellane triimides (TPPTI), in which three chromophores were attached through a nonconjugated bridge. Through a combination of theoretical calculations and steady-state absorption results, we demonstrated that this nonconjugated TPPTI possesses negligible exciton coupling. Increased solvent polarity was found to significantly enhance state mixing between local excited and charge transfer states. Using transient absorption spectroscopy, ultrafast SB-CS was observed in highly polar dimethylformamide, facilitated by a selective hole-transfer coupling and a favorable charge separation free energy (ΔGCS). Additionally, the rate ratio between SB-CS and charge recombination was at least high to 1800 in dimethylformamide. This investigation provides profound insights into the role of null-exciton coupling in dominating ultrafast SB-CS in multichromophoric systems.

3.
J Phys Chem B ; 128(16): 3964-3971, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38602495

RESUMO

The properties and formation mechanisms of the triplet state have been widely investigated since they are crucial intermediates in photo functional devices. Specifically, helical PDI dimers, horizontal expanded π-conjugated derivatives of PDI, have shown outstanding performance as electron acceptors in enhancing the performance of photovoltaics. Therefore, the exploration of triplet generation in helical PDI dimers plays a crucial role in understanding the mechanisms and excavating their further application. We make use of Se-annulation to induce intersystem crossing (ISC) in helical PDI dimers and further explore the triplet evolution process systematically as the number of Se atoms increases by transient absorption spectroscopy and the hole-electron analysis method. It shows that the twisted molecular conformation has paved the way for potential ISC in a parent molecule PDI2. The incorporation of Se atoms can result in evident promotion in the efficiency of ISC (ϕTPDI2-2Se = 96.9%) compared to the parent molecule PDI2 (ϕTPDI2 = 26.5%), indicating that chalcogen-annulation is also an efficient strategy in a π-extended system. Our results provide useful insights for understanding the triplet evolution process, which can help broaden the application of the π-extended PDI system into high-performance photovoltaics.

4.
Macromol Rapid Commun ; 45(1): e2300241, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37548255

RESUMO

Singlet fission (SF) is a spin-allowed process in which a higher-energy singlet exciton is converted into two lower-energy triplet excitons via a triplet pair intermediate state. Implementing SF in photovoltaic devices holds the potential to exceed the Shockley-Queisser limit of conventional single-junction solar cells. Although great progress has been made in exploiting the underlying mechanism of SF over the past decades, the scope of materials capable of SF, particularly polymeric materials, remains poor. SF-capable polymer is one of the most potential candidates in the implementation of SF into devices due to their distinct superiorities in flexibility, solution processability and self-assembly behavior. Notably, recent advancements have demonstrated high-performance SF in isolated donor-acceptor (D-A) copolymer chains. This review provides an overview of recent progress in the development of SF-capable polymeric materials, with a significant focus on elucidating the mechanisms of SF in polymers and optimizing the design strategies for SF-capable polymers. Additionally, the paper discusses the challenges encountered in this field and presents future perspectives. It is expected that this comprehensive review will offer valuable insights into the design of novel SF-capable polymeric materials, further advancing the potential for SF implementation in photovoltaic devices.


Assuntos
Polímeros
5.
J Phys Chem Lett ; 14(20): 4822-4829, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37191450

RESUMO

Bay-annulated indigo (BAI) is a new potential SF-active building block, which has aroused great interest in the design of highly stable singlet fission materials. However, singlet fission of unfunctionalized BAI is inactive due to the inappropriate energy levels. Herein, we seek to develop a new design strategy by introducing the charge transfer interaction to tune the exciton dynamics of BAI derivatives. A new donor-acceptor molecule (TPA-2BAI) and two control molecules (TPA-BAI and 2TPA-BAI) were designed and synthesized to unravel the veil of CT states in tuning the excited-state dynamics of BAI derivatives. Transient absorption spectroscopy studies show that CT states are generated immediately following the excitation. However, the low-lying CT states induced by strong donor-acceptor interactions result in them acting as trap states and inhibiting the SF process. These results show that the low-lying CT state is detrimental to SF and provide insight into the design of CT-mediated BAI-based SF materials.

6.
Adv Mater ; 35(29): e2301732, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060332

RESUMO

Terpolymer fabrication is an effective methodology for molecular engineering and generating high-performance organic photovoltaic materials to construct highly efficient polymer solar cells. Modification of the polymer PM6 by incorporating a third component resulting in the formation of a ternary copolymer is reported to outperform PM6 in achieving enhanced device performances. However, one of the major challenges in constructing high-performance terpolymers is to counter the molecular disorder caused by the backbone entropy induced by the third moiety. In this work, double B←N bridged bipyridine (BNBP) is used as the third component, which possesses a strong out-of-plane electrostatic dipole owing to the saddle-shaped B←N fused ring structure. The out-of-plane dipole moment introduced in the modified PM6 terpolymer can be used as a means for tuning and optimizing the nanostructures of the blended films. The prepared PM6-BNBP-4 blend polymer with 4% of the benzodithiophene dione monomers replaced by BNBP results in excellent power conversion efficiency of 19.13%. This work demonstrates that the out-of-plane electrostatic dipole moment in saddle-shaped molecules is valuable for achieving high-performance organic photovoltaic donor materials.

7.
J Phys Chem Lett ; 14(13): 3249-3257, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975134

RESUMO

The development of antenna molecules with simplified structures can effectively avoid the complex exciton dynamics resulting from conformational mobility. Two distinct heterodimers TP and TBP comprising a perylenediimide (PDI) donor and terrylenediimide (TDI) acting as an energy sink were investigated. Tuned by varying functionalization positions, the bay-to-bay-linked TP offers a strong chromophore coupling, while the bay-to-N-linked TBP exhibits a weak chromophore coupling. Using transient absorption spectroscopy, we found that TP underwent ultrafast vibrational relaxation (τVR < 400 fs) from upper vibrational energy levels of the singlet states after pumping at 490 nm, and followed by electron transfer (ET, τET = 2.5 ps) from TDI to PDI. TBP exhibited ultrafast excitation energy transfer (EET, τEET = 0.48 ± 0.1 ps) from the excited PDI donor to TDI acceptor, and the subsequent charge transfer (CT) process was almost quenched. This result provides insight into designing novel small molecules capable of efficient energy transfer.

8.
Adv Mater ; 35(17): e2211871, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731510

RESUMO

Suppressing the photon energy loss (Eloss ), especially the non-radiative loss, is of importance to further improve the device performance of organic solar cells (OSCs). However, typical π-conjugated semiconductors possess a large singlet-triplet energy gap (ΔEST ), leading to a lower triplet state than charge transfer state and contributing to a non-radiative loss channel of the photocurrent by the triplet state. Herein, a series of triplet polymer donors are developed by introducing a BNIDT block into the PM6 polymer backbone. The high electron affinity of BNIDT and the opposite resonance effect of the BN bond in BNIDT results in a lowered highest occupied molecular orbital (HOMO) and a largely reduced ΔEST . Moreover, the morphology of the active blends is also optimized by fine-tuning the BNIDT content. Therefore, non-radiative recombination via the terminal triplet loss channels and morphology traps is effectively suppressed. The PNB-3 (with 3% BNIDT):L8-BO device exhibits both small ΔEST and optimized morphology, favoring more efficient charge transfer and transport. Finally, the simultaneously enhanced Voc of 0.907 V, Jsc of 26.59 mA cm-2 , and FF of 78.86% contribute to a champion PCE of 19.02%. Therefore, introducing BN bonds into benchmark polymers is a possible avenue toward higher-performance of OSCs.

9.
Adv Sci (Weinh) ; 9(23): e2202022, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35748169

RESUMO

Despite remarkable breakthrough made by virtue of "polymerized small-molecule acceptor (PSMA)" strategy recently, the limited selection pool of high-performance polymer acceptors and long-standing challenge in morphology control impede their further developments. Herein, three PSMAs of PYDT-2F, PYDT-3F, and PYDT-4F are developed by introducing different fluorine atoms on the end groups and/or bithiophene spacers to fine-tune their optoelectronic properties for high-performance PSMAs. The PSMAs exhibit narrow bandgap and energy levels that match well with PM6 donor. The fluorination promotes the crystallization of the polymer chain for enhanced electron mobility, which is further improved by following n-doping with benzyl viologen additive. Moreover, the miscibility is also improved by introducing more fluorine atoms, which promotes the intermixing with PM6 donor. Among them, PYDT-3F exhibits well-balanced high crystallinity and miscibility with PM6 donor; thus, the layer-by-layer processed PM6/PYDT-3F film obtains an optimal nanofibril morphology with submicron length and ≈23 nm width of fibrils, facilitating the charge separation and transport. The resulting PM6/PYDT-3F devices realizes a record high power conversion efficiency (PCE) of 17.41% and fill factor of 77.01%, higher than the PM6/PYDT-2F (PCE = 16.25%) and PM6/PYDT-4F (PCE = 16.77%) devices.

10.
J Phys Chem B ; 126(20): 3758-3767, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559687

RESUMO

Symmetry-breaking charge separation (SB-CS) provides a very promising option to engineer a novel light conversion scheme, while it is still a challenge to realize SB-CS in a nonpolar environment. The strength of electronic coupling plays a crucial role in determining the exciton dynamics of organic semiconductors. Herein, we describe how to mediate interchromophore coupling to achieve SB-CS in a nonpolar solvent by the use of two perylenediimide (PDI)-based trimers, 1,7-tri-PDI and 1,6-tri-PDI. Although functionalization at the N-atom decreases electronic coupling between PDI units, our strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked PDI units, leading to enhanced interchromophore electronic coupling. Tunable electronic coupling was realized by the judicious combination of "bridge resonance" with N-functionalization. The enhanced mixing between the S1 state and CT/CS states results in direct observation of the CT band in the steady-state UV-vis absorption and negative free energy of charge separation (ΔGCS) in both chloroform and toluene for the two trimers. Using transient absorption spectroscopy, we demonstrated that photoinduced SB-CS in a nonpolar solvent is feasible. This work highlights that the use of "bridge resonance" is an effective way to control exciton dynamics of organic semiconductors.


Assuntos
Imidas , Perileno , Imidas/química , Perileno/análogos & derivados , Perileno/química , Solventes , Análise Espectral
12.
Nat Mater ; 21(2): 210-216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34764429

RESUMO

X-ray detection, which plays an important role in medical and industrial fields, usually relies on inorganic scintillators to convert X-rays to visible photons; although several high-quantum-yield fluorescent molecules have been tested as scintillators, they are generally less efficient. High-energy radiation can ionize molecules and create secondary electrons and ions. As a result, a high fraction of triplet states is generated, which act as scintillation loss channels. Here we found that X-ray-induced triplet excitons can be exploited for emission through very rapid, thermally activated up-conversion. We report scintillators based on three thermally activated delayed fluorescence molecules with different emission bands, which showed significantly higher efficiency than conventional anthracene-based scintillators. X-ray imaging with 16.6 line pairs mm-1 resolution was also demonstrated. These results highlight the importance of efficient and prompt harvesting of triplet excitons for efficient X-ray scintillation and radiation detection.


Assuntos
Elétrons , Fótons , Fluorescência , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA