Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(5): 2338-2352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531810

RESUMO

Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate-sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges. Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel 'phenology-informed' SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology-informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting. When examining the range changes of all species, our phenology-informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes. Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait-based SDMs across spatial and taxonomic scales.


Assuntos
Mudança Climática , Modelos Biológicos , Especificidade da Espécie , Plantas , Extinção Biológica , Ecossistema
2.
Sci China Life Sci ; 67(4): 817-828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217639

RESUMO

The Convention on Biological Diversity seeks to conserve at least 30% of global land and water areas by 2030, which is a challenge but also an opportunity to better preserve biodiversity, including flowering plants (angiosperms). Herein, we compiled a large database on distributions of over 300,000 angiosperm species and the key functional traits of 67,024 species. Using this database, we constructed biodiversity-environment models to predict global patterns of taxonomic, phylogenetic, and functional diversity in terrestrial angiosperms and provide a comprehensive mapping of the three diversity facets. We further evaluated the current protection status of the biodiversity centers of these diversity facets. Our results showed that geographical patterns of the three facets of plant diversity exhibited substantial spatial mismatches and nonoverlapping conservation priorities. Idiosyncratic centers of functional diversity, particularly of herbaceous species, were primarily distributed in temperate regions and under weaker protection compared with other biodiversity centers of taxonomic and phylogenetic facets. Our global assessment of multifaceted biodiversity patterns and centers highlights the insufficiency and unbalanced conservation among the three diversity facets and the two growth forms (woody vs. herbaceous), thus providing directions for guiding the future conservation of global plant diversity.


Assuntos
Magnoliopsida , Filogenia , Biodiversidade , Plantas , Ecossistema , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA