Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Ecol Resour ; 24(2): e13896, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955396

RESUMO

Island endemic birds account for the majority of extinct vertebrates in the past few centuries. To date, the evolutionary characteristics of island endemic bird's is poorly known. In this research, we de novo assembled a high-quality chromosome-level reference genome for the Swinhoe's pheasant, which is a typical endemic island bird. Results of collinearity tests suggest rapid ancient chromosome rearrangement that may have contributed to the initial species radiation within Phasianidae, and a role for the insertions of CR1 transposable elements in rearranging chromosomes in Phasianidae. During the evolution of the Swinhoe's pheasant, natural selection positively selected genes involved in fecundity and body size functions, at both the species and population levels, which reflect genetic variation associated with island adaptation. We further tested for variation in population genomic traits between the Swinhoe's pheasant and its phylogenetically closely related mainland relative the silver pheasant, and found higher levels of genetic drift and inbreeding in the Swinhoe's pheasant genome. Divergent demographic histories of insular and mainland bird species during the last glacial period may reflect the differing impact of insular and continental climates on the evolution of species. Our research interprets the natural history and population genetic characteristics of the insular endemic bird the Swinhoe's pheasant, at a genome-wide scale, provides a broader perspective on insular speciation, and adaptive evolution and contributes to the genetic conservation of island endemic birds.


Assuntos
Galliformes , Genômica , Animais , Genoma , Deriva Genética , Galliformes/genética , Evolução Molecular
2.
Mar Biotechnol (NY) ; 25(4): 567-579, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37450059

RESUMO

Large yellow croaker (Larimichthys crocea) is an important aquaculture species in China. This study analysed whole-genome methylation differences in liver tissues of young fish under different hypoxic and acidification conditions. Differentially methylated regions (DMRs) and differentially methylated genes (DMGs) were identified. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) enrichment analyses of DMGs were conducted to explore the mechanism of coping with hypoxic acidification. The main methylation type was CG, accounting for > 70% of total methylation, significantly higher than CHG and CHH methylation types. GO enrichment analysis of DMGs revealed strong enrichment of nervous system development, cell periphery, plasma membrane, cell junction organisation, cell junction, signalling receptor activity, molecular sensor activity, cell-linked tissue junction organisation, cell-cell adhesion and nervous system development. KEGG enrichment analysis of DMR-related genes identified cell adhesion molecules, cortisol synthesis and secretion and aldosterone synthesis and secretion as the three key pathways regulating the physiological responses to hypoxia and acidification. Long-term hypoxic and acidification stress affected the immune system, nervous system and stress responses of large yellow croaker. Whole-genome sequencing analysis of exposed tissues was used to investigate changes that occur in L. crocea in response to hypoxic and acidic conditions at the DNA methylation level. The findings contribute to our comprehensive understanding of functional methylation in large yellow croaker and will support future research on the response mechanisms of this species under different environmental pressures.


Assuntos
Hipóxia , Perciformes , Animais , Hipóxia/genética , Fígado/metabolismo , Metilação de DNA , Perciformes/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Peixes/genética
3.
PLoS Pathog ; 19(5): e1011384, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196026

RESUMO

Malayan pangolin SARS-CoV-2-related coronavirus (SARSr-CoV-2) is closely related to SARS-CoV-2. However, little is known about its pathogenicity in pangolins. Using CT scans we show that SARSr-CoV-2 positive Malayan pangolins are characterized by bilateral ground-glass opacities in lungs in a similar manner to COVID-19 patients. Histological examination and blood gas tests are indicative of dyspnea. SARSr-CoV-2 infected multiple organs in pangolins, with the lungs the major target, and histological expression data revealed that ACE2 and TMPRSS2 were co-expressed with viral RNA. Transcriptome analysis indicated that virus-positive pangolins were likely to have inadequate interferon responses, with relative greater cytokine and chemokine activity in the lung and spleen. Notably, both viral RNA and viral proteins were detected in three pangolin fetuses, providing initial evidence for vertical virus transmission. In sum, our study outlines the biological framework of SARSr-CoV-2 in pangolins, revealing striking similarities to COVID-19 in humans.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Pangolins/genética , SARS-CoV-2/genética , Virulência , Filogenia , RNA Viral , Tropismo
4.
BMC Biol ; 21(1): 64, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37069598

RESUMO

BACKGROUND: Among six extant tiger subspecies, the South China tiger (Panthera tigris amoyensis) once was widely distributed but is now the rarest one and extinct in the wild. All living South China tigers are descendants of only two male and four female wild-caught tigers and they survive solely in zoos after 60 years of effective conservation efforts. Inbreeding depression and hybridization with other tiger subspecies were believed to have occurred within the small, captive South China tiger population. It is therefore urgently needed to examine the genomic landscape of existing genetic variation among the South China tigers. RESULTS: In this study, we assembled a high-quality chromosome-level genome using long-read sequences and re-sequenced 29 high-depth genomes of the South China tigers. By combining and comparing our data with the other 40 genomes of six tiger subspecies, we identified two significantly differentiated genomic lineages among the South China tigers, which harbored some rare genetic variants introgressed from other tiger subspecies and thus maintained a moderate genetic diversity. We noticed that the South China tiger had higher FROH values for longer runs of homozygosity (ROH > 1 Mb), an indication of recent inbreeding/founder events. We also observed that the South China tiger had the least frequent homozygous genotypes of both high- and moderate-impact deleterious mutations, and lower mutation loads than both Amur and Sumatran tigers. Altogether, our analyses indicated an effective genetic purging of deleterious mutations in homozygous states from the South China tiger, following its population contraction with a controlled increase in inbreeding based on its pedigree records. CONCLUSIONS: The identification of two unique founder/genomic lineages coupled with active genetic purging of deleterious mutations in homozygous states and the genomic resources generated in our study pave the way for a genomics-informed conservation, following the real-time monitoring and rational exchange of reproductive South China tigers among zoos.


Assuntos
Tigres , Animais , Feminino , Masculino , Tigres/genética , Metagenômica , Genoma , Genômica , China , Conservação dos Recursos Naturais
5.
Nat Microbiol ; 8(1): 121-134, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604514

RESUMO

The coronavirus SARS-CoV-2 causes the severe disease COVID-19. SARS-CoV-2 infection is initiated by interaction of the viral spike protein and host receptor angiotensin-converting enzyme 2 (ACE2). We report an improved bright and reversible fluorogenic reporter, named SURF (split UnaG-based reversible and fluorogenic protein-protein interaction reporter), that we apply to monitor real-time interactions between spike and ACE2 in living cells. SURF has a large dynamic range with a dark-to-bright fluorescence signal that requires no exogenous cofactors. Utilizing this reporter, we carried out a high-throughput screening of small-molecule libraries. We identified three natural compounds that block replication of SARS-CoV-2 in both Vero cells and human primary nasal and bronchial epithelial cells. Cell biological and biochemical experiments validated all three compounds and showed that they block the early stages of viral infection. Two of the inhibitors, bruceine A and gamabufotalin, were also found to block replication of the Delta and Omicron variants of SARS-CoV-2. Both bruceine A and gamabufotalin exhibited potent antiviral activity in K18-hACE2 and wild-type C57BL6/J mice, as evidenced by reduced viral titres in the lung and brain, and protection from alveolar and peribronchial inflammation in the lung, thereby limiting disease progression. We propose that our fluorescent assay can be applied to identify antiviral compounds with potential as therapeutic treatment for COVID-19 and other respiratory diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Camundongos , Humanos , Animais , SARS-CoV-2/metabolismo , Células Vero , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A/metabolismo , Antivirais/farmacologia
6.
J Immunol Res ; 2022: 5242948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530572

RESUMO

Previous studies have shown that HLA gene polymorphisms are associated with the pathogenesis of the Posner-Schlossman syndrome (PSS). This study was aimed at evaluating the associations between HLA-III gene polymorphisms and PSS in a southern Chinese Han population. A total of 150 PSS patients and 183 healthy controls were included in this study. Twenty-one single nucleotide polymorphisms (SNPs) of HLA-III genes (including HSP70-1, HSP70-2, HSP70-hom, TNF-α, TNF-ß, C2, and CFB) were genotyped using the SNaPshot technique. Our study showed that the frequencies of G allele at rs909253, A allele at rs1041981, and G allele at rs2844484 of TNF-ß in the patient group were significantly higher than those in healthy controls (Corrected P (P c ) = 0.040, OR = 1.45; P c = 0.033, OR = 1.45; P c = 0.045, OR = 1.58, respectively). The frequency of T allele at rs12190359 of HSP70-1 was significantly lower in PSS patients than those in healthy controls (P c = 0.018 and OR = 0.10). The frequencies of the CCT haplotype of HSP70-1 gene (rs1008438-rs562047-rs12190359) and the ACCCTTT haplotype of HSP70 gene (rs2227956-rs1043618-rs1008438-rs562047-rs12190359-rs2763979-rs6457452) were significantly lower in PSS patients than those in healthy controls (P c = 0.024, OR = 0.10; P c = 0.048, OR = 0.10, respectively). In conclusion, the G allele at rs909253, A allele at rs1041981, and G allele at rs2844484 of TNF-ß gene might be risk factors for PSS, while the T allele at rs12190359 of HSP70-1 gene and specific haplotypes of the HSP70-1 and HSP70 genes might be protective factors for PSS.


Assuntos
Predisposição Genética para Doença , Linfotoxina-alfa , Humanos , Frequência do Gene , Linfotoxina-alfa/genética , População do Leste Asiático , Haplótipos , Polimorfismo de Nucleotídeo Único , Genótipo , Proteínas de Choque Térmico HSP70/genética
7.
Vet Sci ; 9(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423081

RESUMO

Fishes live in aquatic environments and several aquatic environmental factors have undergone recent alterations. The molecular mechanisms underlying fish responses to hypoxia and acidification stress have become a serious concern in recent years. This study revealed that hypoxia and acidification stress suppressed the growth of body length and height of the large yellow croaker (Larimichthys crocea). Subsequent transcriptome analyses of L. crocea juveniles under hypoxia, acidification, and hypoxia-acidification stress led to the identification of 5897 differentially expressed genes (DEGs) in the five groups. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that several DEGs were enriched in the 'protein digestion and absorption' pathway. Enrichment analysis revealed that this pathway was closely related to hypoxia and acidification stress in the five groups, and we found that genes of the collagen family may play a key role in this pathway. The zf-C2H2 transcription factor may play an important role in the hypoxia and acidification stress response, and novel genes were additionally identified. The results provide new clues for further research on the molecular mechanisms underlying hypoxia-acidification tolerance in L. crocea and provides a basic understanding of the potential combined effects of reduced pH and dissolved oxygen on Sciaenidae fishes.

8.
Transl Vis Sci Technol ; 11(5): 12, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35575776

RESUMO

Purpose: The purpose of this study was to explore the therapeutic effect of human umbilical cord mesenchymal stem cell (HUMSC) transplantation alone or assisted with ultrasound targeted microbubble destruction (UTMD) on optic neuropathy in a novel and practical model of experimental glaucoma in rabbits. Methods: Eight New Zealand white healthy rabbits were used as the control group (group A). Twenty-four experimental glaucomatous rabbits were established as described previously and randomly divided into three groups: (1) received no treatment (group B); (2) received intravitreal transplantation of HUMSCs (group C); and (3) received UTMD-assisted intravitreal transplantation of HUMSCs (group D). After 4 weeks of treatment, the distribution of HUMSCs, retinal thickness, layer structure, retinal ganglion cells (RGCs), and their axons were examined. Results: After 4 weeks of treatment, HUMSCs were successfully scattered under the retina. HUMSC transplantation significantly increased the regeneration of RGCs and their axons, and restored the retinal structure in glaucomatous rabbits. Moreover, the application of UTMD enhances HUMSC distribution and achieved more significant therapeutic effect. Conclusions: Intravitreal transplantation of HUMSCs effectively repaired glaucomatous optic nerve injury, and UTMD enhanced the successful delivery of HUMSCs into injured retina, promoting its therapeutic effects remarkably. Translational Relevance: This study demonstrated that HUMSC transplantation repaired the glaucoma-caused nerve injury significantly and the combination of UTMD can augment the therapeutic effect further, which has important clinical guiding significance for the development of therapeutic strategies of glaucoma.


Assuntos
Glaucoma , Células-Tronco Mesenquimais , Traumatismos do Nervo Óptico , Animais , Modelos Animais de Doenças , Glaucoma/cirurgia , Microbolhas , Traumatismos do Nervo Óptico/terapia , Coelhos , Cordão Umbilical
9.
Ying Yong Sheng Tai Xue Bao ; 33(2): 551-559, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35229530

RESUMO

To investigate the ion regulation of large yellow croaker (Larimichthys crocea) under hypoxia and acidification stresses, we investigated the effects of hypoxia (dissolved oxygen DO 3.5 mg·L-1, pH 8.1), acidification (DO 7.0 mg·L-1, pH 7.35) and combined stresses of hypoxia and acidification (DO 3.5 mg·L-1, pH 7.35) on gill tissue structure and physiological indices related to ion regulation of juvenile L. croaker. The results showed that, under hypoxia stress, gill Na+/K+-ATPase activity, serum Na+, Ca2+ and Cl- contents of juvenile L. croaker decreased first and then increased. Under acidification stress, gill Ca2+-ATPase activity, serum Na+ and Ca2+ contents of juvenile L. croaker increased first and then decreased. Under the combined stresses of hypoxia and acidification, Na+/K+-ATPase activity and Na+, K+ and Ca2+ contents increased first and then decreased, while Ca2+-ATPase activity and Cl- content decreased first and then increased. The results of gill histology showed that hypoxia and acidification stresses led to the detachment of gill epithelial cells, and the combined stresses of hypoxia and acidification led to proliferation, hypertrophy and swelling of gill epithelial cells. Comprehensive analysis showed that hypoxia and acidification stress affected the activities of major ion regulatory enzymes in juvenile L. croaker and caused different degrees of damage to gill tissue, resulting in imbalanced ion regulation in juvenile L. croaker.


Assuntos
Brânquias , Perciformes , Animais , Homeostase , Concentração de Íons de Hidrogênio , Hipóxia/veterinária , Perciformes/fisiologia , ATPase Trocadora de Sódio-Potássio
10.
Front Immunol ; 12: 774233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912344

RESUMO

Vibrio anguillarum, an opportunistic pathogen of aquatic animals, moves using a filament comprised of polymerised flagellin proteins. Flagellins are essential virulence factors for V. anguillarum infection. Herein, we investigated the effects of flagellins (flaA, flaB, flaC, flaD and flaE) on cell apoptosis, TLR5 expression, and production of IL-8 and TNF-α. FlaB exhibited the strongest immunostimulation effects. To explore the functions of flaB in infection, we constructed a flaB deletion mutant using a two-step recombination method, and in vitro experiments showed a significant decrease in the expression of TLR5 and inflammatory cytokines compared with wild-type cells. However in the in vivo study, expression of inflammatory cytokines and intestinal mucosal structure showed no significant differences between groups. Additionally, flaB induced a significant increase in TLR5 expression based on microscopy analysis of fluorescently labelled TLR5, indicating interactions between the two proteins, which was confirmed by native PAGE and yeast two-hybrid assay. Molecular simulation of interactions between flaB and TLR5 was performed to identify the residues involved in binding, revealing two binding sites. Then, based on molecular dynamics simulations, we carried out thirteen site-directed mutations occurring at the amino acid sites of Q57, N83, N87, R91, D94, E122, D152, N312, R313, N320, L97, H316, I324 in binding regions of flaB protein by TLR5, respectively. Surface plasmon resonance (SPR) was employed to compare the affinities of flaB mutants for TLR5, and D152, D94, I324, N87, R313, N320 and H316 were found to mediate interactions between flaB and TLR5. Our comprehensive and systematic analysis of V. anguillarum flagellins establishes the groundwork for future design of flagellin-based vaccines.


Assuntos
Flagelina/química , Flagelina/imunologia , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Vibrioses/veterinária , Vibrio/imunologia , Animais , Apoptose , Suscetibilidade a Doenças , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Flagelina/genética , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Mucosa Intestinal/patologia , Mucosa Intestinal/ultraestrutura , Modelos Moleculares , Mutação , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Relação Estrutura-Atividade , Vibrio/patogenicidade , Virulência , Fatores de Virulência
12.
Artigo em Inglês | MEDLINE | ID: mdl-34634570

RESUMO

For many years, jellyfish were described as 'dead ends' in marine food webs, due to their high-water content and low nutritional value. However, it has been confirmed that silver pomfret (Pampus argenteus) has a particular preference for preying on jellyfish. In this study, we determined the effect of consuming jellyfish on the intestinal microbes of silver pomfret. Analysis of bacterial 16S rRNA gene amplicons showed that jellyfish had a dramatic impact on the composition of the gut microbiota. The content of Proteobacteria was reduced from 99% to 51%, while Firmicutes, Bacteroidetes and Actinobacteria increased, accounting for 35%, 9% and 2% of the total flora, respectively. At the genus level, the content of Photobacterium decreased sharply to <1% of the total flora. By contrast, Lactobacillus, Burkholderia and Sphingomonas increased to 12%, 9% and 7% of the total flora, respectively. After feeding jellyfish, the functions of intestinal microbes and the activity of digestive enzymes also changed, resulting in better digestion and absorption of jellyfish. The results provide insights into the specific bacterial taxa within the silver pomfret intestinal microbiome that are impacted by jellyfish. Silver pomfret can better digest and absorb jellyfish by adjusting the intestinal microbial composition. The findings provide a theoretical basis for the digestive mechanism by which silver pomfret consume jellyfish.


Assuntos
Microbioma Gastrointestinal , Perciformes , Animais , Perciformes/genética , Proteínas , RNA Ribossômico 16S/genética
13.
3 Biotech ; 11(4): 192, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927983

RESUMO

Many fish species are known to feed on jellyfish. Herein, we observed the effects of jellyfish feeding on silver pomfret using gas chromatography tandem time-of-flight mass spectrometry (GC-TOF-MS) based on metabolomics. We studied the effects of feeding on jellyfish on skin and serum immune of silver pomfret. Healthy silver pomfret (initial weight, 13.40 ± 1.565 g) was divided into two groups: control and feeding. The pomfrets were fed jellyfish at 2, 6, 12, 24, and 72 h, and samples were obtained. Statistical analysis revealed that after jellyfish feeding, most serum immune indicators did not show a significant change; however, skin immune indicators indicated that silver pomfret elicit a stress response on encountering jellyfish, gradually adapting to their presence. We therefore conducted further experiments involving two groups: group A, which was not fed any extra jellyfish, and group B, which was fed extra jellyfish (approximately 10% weight of silver pomfret) every day for 60 days. Orthogonal partial least squares discriminant analysis led to the identification of stronger biomarkers, with the liver metabolome showing obvious variations between the groups (group B vs. A). After feeding jellyfish by silver pomfret, some amino acids, amines, and unsaturated fatty acids in the liver tissue showed a significant increase. Our results, thus, not only reveal changes in physiological indices of silver pomfret after feeding on jellyfish but also provide a new idea for further optimizing the feed formula for silver pomfret culture.

14.
Front Immunol ; 12: 607966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717091

RESUMO

Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1) are well-known key immune checkpoints that play a crucial dampening effect on regulating T-cell homeostasis and self-tolerance. In this study, we aimed to evaluate the association between immune checkpoints (CTLA-4 and PD-1) and Posner-Schlossman syndrome (PSS) in a southern Chinese population. A total of 137 patients with PSS and 139 healthy controls from a southern Chinese population were recruited. Five single nucleotide polymorphisms (SNPs) of CTLA-4 (rs733618, rs4553808, rs5742909, rs231775, and rs3087243) and five SNPs of PD-1 (rs10204525, rs2227981, rs2227982, rs41386349, and rs36084323) were genotyped by SNaPshot technique. Soluble CTLA-4 (sCTLA-4) and soluble PD-1 (sPD-1) were determined by ELISA and antibody array assay, respectively. The frequencies of T allele at rs733618 and A allele at rs231775 of CTLA-4 were significantly higher in PSS patients than in healthy controls (corrected p (Pc ) = 0.037; Pc = 0.044, respectively). The haplotype frequencies of CACGG haplotype (rs733618-rs4553808-rs5742909-rs231775-rs3087243) of CTLA-4 and TGAGC haplotype (rs10204525-rs2227981-rs2227982-rs41386349-rs36084323) of PD-1 in the PSS group was significantly lower than those in the control group (Pc = 0.015, p = 0.034, respectively). Circulating plasma levels of sCTLA-4 and sPD-1 in PSS patients were significantly higher than those in controls (all p < 0.001). The present study suggests that CTLA-4 and PD-1 genetic polymorphisms are associated with the susceptibility to PSS in a southern Chinese population. The upregulated circulating plasma protein levels of sCTLA-4 and sPD-1 might provide some hints regarding the dysfunction of immune checkpoints in PSS during the active status.


Assuntos
Antígeno CTLA-4/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas de Checkpoint Imunológico/sangue , Proteínas de Checkpoint Imunológico/genética , Polimorfismo de Nucleotídeo Único , Receptor de Morte Celular Programada 1/genética , Adulto , Alelos , Biomarcadores , Estudos de Casos e Controles , China , Feminino , Frequência do Gene , Estudos de Associação Genética/métodos , Genótipo , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade
15.
Br J Ophthalmol ; 105(10): 1462-1468, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33221730

RESUMO

PURPOSE: To evaluate the contributions of human leucocyte antigen (HLA) class I and II genes in the development of Graves' ophthalmopathy (GO) in a Southern Chinese population. METHODS: Eight HLA loci were genotyped and analysed in 272 unrelated patients with Graves' disease (GD) or the proptosis and myogenic phenotypes of GO, and 411 ethnically matched control subjects. RESULTS: The allele frequencies of HLA-DRB1*16:02 and -DQB1*05:02 in the GD, proptosis and myogenic groups, HLA-B*38:02 and -DQA1*01:02 in the myogenic group were significantly higher than those in the control group, respectively (all corrected p values <0.05, OR >2.5). The haplotype frequencies of HLA-DRB1*16:02-DQA1*01:02-DQB1*05:02 and HLA-DRB1*16:02-DQA1*01:02-DQB1*05:02-DPA1*02:02-DPB1*05:01 in the proptosis and myogenic groups, and HLA-A*02:03-B*38:02-C*07:02 and HLA-A*02:03-B*38:02-C*07:02-DRB1*16:02-DQA1*01:02-DQB1*05:02-DPA1*02:02-DPB1*05:01 in the myogenic group were significantly higher than those in the control group respectively (all corrected p values <0.05, OR >2.5). The potential epitopes ('FLGIFNTGL' of TSHR, 'IRHSHALVS', 'ILYIRTNAS' and 'FVFARTMPA' of IGF-1R) were fitted exactly in the peptide-binding groove between HLA-DRA1-DRB1*16:02 heterodimer, and the epitopes ('ILEITDNPY' of THSR, 'NYALVIFEM' and 'NYSFYVLDN' of IGF-1R) were also fitted exactly in the peptide-binding groove between HLA-DQA1*01:02-DQB1*05:02 heterodimer. CONCLUSIONS: The HLA-DRB1*16:02 and -DQB1*01:02 alleles might be risk factors for GD including the proptosis and myogenic phenotypes of GO. The alleles HLA-B*38:02, -DQA1*01:02, the HLA haplotypes consisting of HLA-B*38:02, -DRB1*16:02, -DQA1*01:02 and -DQB1*05:02 might be susceptibility risk factors for GO. Simultaneously, some epitopes of TSHR and IGF-1R tightly binding to groove of HLA-DRA1-DRB1*16:02 or HLA-DQA1*01:02-DQB1*05:02 heterodimers might provide some hints on presenting the pathological antigen in GO.


Assuntos
Oftalmopatia de Graves , Alelos , China/epidemiologia , Epitopos , Frequência do Gene , Doença de Graves , Oftalmopatia de Graves/genética , Antígenos HLA-A , Antígenos HLA-B/genética , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Haplótipos , Humanos , Peptídeos
16.
bioRxiv ; 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32511329

RESUMO

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption 1,2 . There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.

17.
Nature ; 583(7816): 459-468, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32353859

RESUMO

A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein-protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Reposicionamento de Medicamentos , Terapia de Alvo Molecular , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Mapas de Interação de Proteínas , Proteínas Virais/metabolismo , Animais , Antivirais/classificação , Antivirais/farmacologia , Betacoronavirus/genética , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Chlorocebus aethiops , Clonagem Molecular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imunidade Inata , Espectrometria de Massas , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Domínios Proteicos , Mapeamento de Interação de Proteínas , Receptores sigma/metabolismo , SARS-CoV-2 , Proteínas Ligases SKP Culina F-Box/metabolismo , Células Vero , Proteínas Virais/genética , Tratamento Farmacológico da COVID-19
18.
Nature ; 583(7815): 286-289, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380510

RESUMO

The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.


Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Eutérios/virologia , Evolução Molecular , Genoma Viral/genética , Homologia de Sequência do Ácido Nucleico , Animais , Betacoronavirus/classificação , COVID-19 , China , Quirópteros/virologia , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Reservatórios de Doenças/virologia , Genômica , Especificidade de Hospedeiro , Humanos , Pulmão/patologia , Pulmão/virologia , Malásia , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase , Recombinação Genética , SARS-CoV-2 , Alinhamento de Sequência , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Zoonoses/transmissão , Zoonoses/virologia
19.
Int J Biol Macromol ; 155: 805-813, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243931

RESUMO

Toll-like receptors (TLRs) play important roles in the innate system by recognizing pathogen-associated molecular patterns derived from various microbes. In this study, we reported the cloning and identification of paTLR3 and paTLR4 interactor with leucine rich repeats (TRIL) cDNA from silvery pomfret (Pampus argenteus). The full-length paTLR3 and paTRIL cDNA were 2996 and 3163 bp long, respectively. Both of the two proteins contained many LRR domains, one LRR-C terminal domain and one transmembrane region, which fits with the characteristic TLR and its analogue domain architecture. Phylogenetic analyses revealed that paTLR3 and paTRIL shared the closest relationship with Lateolabrax japonicas and Notothenia coriiceps, respectively. The expression levels of paTLR3 and paTRIL varied greatly among the examined tissues with the highest expression both in liver. Following exposure to V. anguillarum flagellin, A. hydrophila lipopolysaccharide (LPS) and L. plantarum lipoteichoic acid (LTA), paTLR3 and paTRIL were all up-regulated. V. anguillarum flagellin induced the highest expression levels of paTLR3 and paTRIL. A. hydrophila flagellin and A. hydrophila LPS induced the highest expression levels of IL-1ß and IL-8, respectively. The present results will provide the valuable information for understanding the structure, function and the immune defense process of paTLR3 and paTRIL in silvery pomfret.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Peixes/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Proteínas de Membrana/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Bactérias , Flagelina/farmacologia , Expressão Gênica/imunologia , Imunidade Inata , Interleucinas/imunologia , Lipopolissacarídeos/farmacologia , Ácidos Teicoicos/farmacologia
20.
Cells ; 9(1)2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936903

RESUMO

FoxO1 is a conserved transcription factor involved in energy metabolism. It is tightly regulated by modifications on its mRNA and protein and responds to environmental nutrient signals. FoxO1 controls the transcription of downstream genes mediating metabolic regulation. Dysfunction of FoxO1 pathways results in several metabolic diseases, including diabetes, obesity, non-alcoholic fatty liver disease, and atherosclerosis. Here, we summarize the mechanism of FoxO1 regulation behind these diseases and FoxO1-related drug discoveries.


Assuntos
Descoberta de Drogas , Proteína Forkhead Box O1/metabolismo , Doenças Metabólicas/metabolismo , Animais , Humanos , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA