Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 872910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812404

RESUMO

Metabolic reprogramming is a novel method for the treatment of malignant tumors. The exploration of metabolism procedures between radiosensitive and radioresistant tumors may provide novel perspectives for lung adenocarcinoma (LUAD) patients after radiation therapy. In our study, metabolic reprogramming and immune response changes were found between radioresistant cell line (A549RR) and its parent cells (A549) using gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Nucleotide/amino acid, lipid, and glucose metabolic process, including Alanine, aspartate and glutamate metabolism, Tryptophan/Tyrosine metabolism, Butanoate metabolism, Purine/Pyrimidine metabolism, were screened out. Then molecular signatures database and The Cancer Genome Atlas Program (TCGA) lung adenocarcinoma datasets were used to identify metabolism-related genes (MRGs) between radiosensitive and radioresistant lung adenocarcinoma (LUAD) cells. A metabolism-based prognostic model, receiver operating characteristic (ROC) curve and nomogram were constructed using Metabolism Score calculated by 14 metabolism-related genes (MRGs). Three independent public datasets, (GSE72094, GSE3141, GSE8894) and one immunotherapy cohort (IMvigor210) were used as external validation cohorts. Expression of 14 hub genes in cells, normal and LUAD specimens were explored by Human Protein Atlas, TIMER2.0 and RT-qPCR. Patients with low-Metabolism Scores were correlated with longer survival times, higher response rates to immune checkpoint inhibitors (ICIs), different immune cell infiltrations and drug vulnerability. Our study demonstrated a comprehensive landscape between radiosensitive and radioresistant LUAD, and provide novel targets for NSCLC, especially those patients received radiation therapy. Moreover, this metabolism-based prognostic model may help to investigate connections between radiosensitivity, immune response, metabolic reprogramming, and patients' prognosis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Prognóstico
2.
Radiat Oncol ; 16(1): 198, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635145

RESUMO

BACKGROUND: Second head and neck neuroendocrine carcinoma (NEC) after radical radiotherapy for nasopharyngeal carcinoma (NPC) treatment is rarely reported. The prognosis of second cancer is poor, and our research focuses on finding a breakthrough in the treatment. In this study, we aimed to investigate clinicopathological characteristics and to identify the genomic landscape of second head and neck NECs. METHODS: We collected five second head and neck NEC cases in the recent three years from our patient database. Clinicopathological data and images were obtained. Genomic analysis was performed using high-throughput second generation sequencing. KEGG pathway enrichment analyses between high-frequency mutations were performed using the STRING database. RESULTS: All patients had been diagnosed with second NEC, according to the pathological observations. The interval between diagnosis of NPC and NEC ranged from 10 to 18 years. Two patients had brain or liver metastasis at three and nine months, respectively, after the diagnosis of NEC. Three patients died of the disease with the overall survival time ranging from three to nine months. Commonly altered genes (50%) in second head and neck NECs included TP53, RB1, NOTCH2, PTEN, POLG, KMT2C, U2AF1, EPPK1, ELAC2, DAXX, COL22A1, and ABL1. Those genetic lesions might affect p53 signaling, MAPK signaling, PI3K-Akt signaling, sphingolipid signaling, and neurotrophin signaling pathways. CONCLUSIONS: Second head and neck NECs had poor prognosis. We revealed, for the first time, the mutational landscape, high-frequency somatic mutations, and potential signaling pathways of second head and neck NECs. Its optimal treatment model needs to be further studied in future clinical trials.


Assuntos
Carcinoma Neuroendócrino/patologia , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Segunda Neoplasia Primária/patologia , Idoso , Carcinoma Neuroendócrino/etiologia , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/mortalidade , Feminino , Seguimentos , Genômica , Neoplasias de Cabeça e Pescoço/etiologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/mortalidade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA