Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(2): 50, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285114

RESUMO

MAIN CONCLUSION: The oxidosqualene cyclases (OSCs) generating triterpenoid skeletons in Cyclocarya paliurus were identified for the first time, and two uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyzing the glycosylation of flavonoids were characterized. Cyclocarya paliurus, a native rare dicotyledonous plant in China, contains an abundance of triterpenoid saponins and flavonoid glycosides that exhibit valuable pharmaceutical effects in preventing hypertension, hyperlipidemia, and diabetes. However, the molecular mechanism explaining the biosynthesis of triterpenoid saponin and flavonoid glycoside in C. paliurus remains unclear. In this study, the triterpene content in different tissues and the expression pattern of genes encoding the key enzymes associated with triterpenoid saponin and flavonoid glycoside biosynthesis were studied using transcriptome and metabolome analysis. The eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid saponin biosynthesis were functionally characterized, among them CpalOSC6 catalyzed 2,3;22,23-dioxidosqualene to form 3-epicabraleadiol; CpalOSC8 cyclized 2,3-oxidosqualene to generate dammarenediol-II; CpalOSC2 and CpalOSC3 produced ß-amyrin and CpalOSC4 produced cycloartenol, while CpalOSC2-CpalOSC5, CpalOSC7, and CpalOSC8 all produced lanosterol. However, no catalytic product was detected for CpalOSC1. Moreover, two downstream flavonoid uridine diphosphate (UDP)-glycosyltransferases (UGTs) (CpalUGT015 and CpalUGT100) that catalyze the last step of flavonoid glycoside biosynthesis were functionally elucidated. These results uncovered the key genes involved in the biosynthesis of triterpenoid saponins and flavonoid glycosides in C. paliurus that could be applied to produce flavonoid glycosides and key triterpenoid saponins in the future via a synthetic strategy.


Assuntos
Saponinas , Esqualeno/análogos & derivados , Triterpenos , Glicosídeos , Flavonoides , Saponinas/genética , Glicosiltransferases , Difosfato de Uridina
2.
Front Cardiovasc Med ; 9: 1026587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588551

RESUMO

Objective: To evaluate the diagnostic efficiency of left atrial shortening fraction (LASF) in the detection of fetal cardiac abnormalities and dysfunction in patients with gestational diabetes mellitus (GDM). Methods: In this study, we enrolled 256 pregnant women and divided them into GDM group (n = 156) and control group (n = 100). Fetal echocardiography was performed at 24-28 weeks of gestation to measure the LASF and interventricular septum (IVS) thickness. Based on IVS thickness, the GDM group was subdivided into the septal hypertrophy group (GDM I, n = 62) and non-septal hypertrophy group (GDM II, n = 94). LASF and IVS thickness were compared between the GDM and control groups and between GDM I and GDM II groups. Receiver operating characteristic (ROC) analysis was performed to determine the diagnostic accuracy of LASF in predicting septal hypertrophy. Results: The GDM group had a larger IVS thickness (P < 0.05) but a lower LASF level (P < 0.001) than those of the control group. GDM I group had significantly lower LASF level than that in the GDM II group (P < 0.001). At 38.41% as the cutoff value, the LASF can predict septal hypertrophy with diagnostic sensitivity and specificity of 96.7% and 65.2%, respectively. Conclusion: Fetal GDM are more likely to induce septal hypertrophy and ventricular dysfunction. LASF is a good indicator of septal hypertrophy or early diastolic dysfunction without septal hypertrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA