Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38068692

RESUMO

While transgenic Bacillus thuringiensis (Bt) maize provides pest resistance and a reduced application of chemical pesticides, a comprehensive environmental risk assessment is mandatory before its field release. This research determined the concentrations of Bt protein in plant tissue and in arthropods under field conditions in Gongzhuling City, northeastern China, to provide guidance for the selection of indicator species for non-target risk assessment studies. Bt maize expressing Cry1Ab/2Aj and non-transformed near-isoline were grown under identical environmental and agricultural conditions. Cry1Ab/2Aj was detected in plant tissues and arthropods collected from Bt maize plots during pre-flowering, flowering, and post-flowering. The expression of Cry1Ab/2Aj varied across growth stages and maize tissues, as well as in the collected arthropods at the three growth stages. Therefore, representative species should be chosen to cover the whole growing season and to represent different habitats and ecological functions. Dalbulus maidis (Hemiptera: Cicadellidae), Rhopalosiphum padi (Hemiptera: Aphididae), Heteronychus arator (Coleoptera: Scarabaeidae), and Somaticus angulatus (Coleoptera: Tenebrionidae) are suitable non-target herbivores. Propylea japonica (Coleoptera: Coccinellidae), Paederus fuscipes (Coleoptera: Staphylinidae), Chrysoperla nipponensis (Neuroptera: Chrysopidae), and spiders are suggested predators. Apis cerana and Apis mellifera ligustica (both Hymenoptera: Apidae) represent pollinators and Folsomia candida (Collembola: Isotomidae) decomposers.

2.
Pestic Biochem Physiol ; 184: 105119, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715058

RESUMO

Chilo suppressalis is a major target pest of transgenic rice expressing the Bacillus thuringiensis (Bt) Cry1C toxin in China. The evolution of resistance of this pest is a major threat to Bt rice. Since Bt functions by binding to receptors in the midgut (MG) of target insects, identification of Bt functional receptors in C. suppressalis is crucial for evaluating potential resistance mechanisms and developing effective management strategies. ATP-binding cassette (ABC) transporters have been vastly reported to interact with Cry1A toxins, as receptors and their mutations cause insect Bt resistance. However, the role of ABC transporters in Cry1C resistance to C. suppressalis remains unknown. Here, we measured CsABCC2 expression in C. suppressalis Cry1C-resistant (Cry1C-R) and Cry1C-susceptible strains (selected in the laboratory) via quantitative real-time PCR (qRT-PCR); the transcript level of CsABCC2 in the Cry1C-R strain was significantly lower than that in the Cry1C-susceptible strain. Furthermore, silencing CsABCC2 in C. suppressalis via RNA interference (RNAi) significantly decreased Cry1C susceptibility. Overall, CsABCC2 participates in Cry1C mode of action, and reduced expression of CsABCC2 is functionally associated with Cry1C resistance in C. suppressalis.


Assuntos
Bacillus thuringiensis , Mariposas , Oryza , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Regulação para Baixo , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Larva/fisiologia , Mariposas/metabolismo , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
3.
Nat Commun ; 12(1): 6772, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799588

RESUMO

Normally, when different species of herbivorous arthropods feed on the same plant this leads to fitness-reducing competition. We found this to be different for two of Asia's most destructive rice pests, the brown planthopper and the rice striped stem borer. Both insects directly and indirectly benefit from jointly attacking the same host plant. Double infestation improved host plant quality, particularly for the stemborer because the planthopper fully suppresses caterpillar-induced production of proteinase inhibitors. It also reduced the risk of egg parasitism, due to diminished parasitoid attraction. Females of both pests have adapted their oviposition behaviour accordingly. Their strong preference for plants infested by the other species even overrides their avoidance of plants already attacked by conspecifics. This cooperation between herbivores is telling of adaptations resulting from the evolution of plant-insect interactions, and points out mechanistic vulnerabilities that can be targeted to control these major pests.


Assuntos
Adaptação Fisiológica , Comportamento Cooperativo , Mariposas/patogenicidade , Oryza/parasitologia , Doenças das Plantas/parasitologia , Animais , Comportamento Animal , Herbivoria/fisiologia , Interações Hospedeiro-Parasita , Larva , Mariposas/fisiologia , Oviposição/fisiologia , RNA-Seq
4.
J Agric Food Chem ; 69(14): 4234-4242, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33818077

RESUMO

RNAi-based insect-resistant genetically engineered (IRGE) crops represent a promising approach for pest management by suppressing gene expressions or translation. A developed microRNA-mediated IRGE rice line expressing endogenous Chilo suppressalis Csu-novel-260 shows significant resistance to target pests. The nontarget insect Apis mellifera is an important pollinator used as a surrogate species for the ecological risk assessment of IRGE plants. To simulate a worst-case scenario, the full-length C. suppressalis and A. mellifera disembodied (dib) cDNAs were cloned. The dib 3'-untranslated regions shared 58.06% nucleotide sequence similarity between C. suppressalis and A. mellifera. No potential Csu-novel-260 binding site in Amdib was detected through the bioinformatics analysis. A dietary RNAi toxicity assay of the impacts of ingested Csu-novel-260 on A. mellifera adults showed that the survival rates of RNAi-treated A. mellifera did not significantly differ from those in the blank control (CK) and negative control (NC) treatments. The Csu-novel-260 uptake by A. mellifera peaked at 8 days postfeeding and then gradually decreased. The Amdib expression was not affected by the RNAi assay days or treatments. These results suggest that A. mellifera adults are not susceptible to high doses of Csu-novel-260 in the dietary RNAi assay and that the impact of miRNA-mediated IRGE plants on A. mellifera is negligible.


Assuntos
MicroRNAs , Mariposas , Oryza , Animais , Abelhas/genética , MicroRNAs/genética , Mariposas/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , Pólen/genética
5.
Pest Manag Sci ; 77(9): 3990-3999, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33890699

RESUMO

BACKGROUND: Chilo suppressalis and Cnaphalocrocis medinalis are destructive rice pests co-occurring in major rice-growing areas in China. RNA interference (RNAi)-based insect-resistant genetically engineered (IRGE) crops provide a promising approach for pest management by suppressing gene expression or translation. A microRNA (miRNA)-mediated IRGE rice line expressing endogenous Chilo suppressalis miRNA Csu-novel-260, showing significant resistance against Chilo suppressalis, provides an attractive control strategy for Chilo suppressalis by suppressing the expression of the disembodied (dib) gene expression. However, whether this transgenic line also shows the resistance against Cnaphalocrocis medinalis remains unknown. RESULTS: A spatiotemporal expression analysis of Csu-novel-260 in the transgenic rice line was performed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) to determine the paddy field pest exposure dose. In diet feeding assays, a chemically synthesized Csu-novel-260 agomir at 200 fmol g-1 significantly inhibited Chilo suppressalis pupation. However, larval development, survival and pupal weight were not significantly affected. Additionally, the transgenic line significantly affected Cnaphalocrocis medinalis pupation but not larval survival. The qRT-PCR showed that Csdib and Cmdib expression levels were significantly suppressed when the two pests fed on the transgenic line. Additionally, the transgenic line significantly decreased Cry1C-resistant and Cry1C-susceptible Chilo suppressalis larval survival in detached rice tissue feeding assays, indicating that Cry1C-resistant Chilo suppressalis was not cross-resistant to Csu-novel-260 expressed in miRNA-mediated IRGE rice. CONCLUSION: Our study demonstrated that miRNA-mediated IRGE rice significantly inhibited Chilo suppressalis and Cnaphalocrocis medinalis pupation. The results provide a new viewpoint for the application of RNAi-based plants and the inspiration for environmental risk assessment.


Assuntos
MicroRNAs , Mariposas , Oryza , Animais , Larva/genética , MicroRNAs/genética , Mariposas/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética
6.
Insect Sci ; 28(4): 1139-1146, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32510773

RESUMO

Use of genetically engineered plants that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) have been proven efficacious for managing lepidopteran pests. However, in some cases herbivores that are not targeted by the Bt trait have increased in importance. It has been suggested that reduced caterpillar damage to Bt crops could lead to decreased levels of induced plant defensive compounds which might benefit other non-target herbivores. Here we investigated the potential effect of reduced damage by larvae of Mythimna separata on aphid populations in Bt corn. We compared the performance of Rhopalosiphum maidis feeding on non-Bt corn plants that had been infested by M. separata larvae or were uninfested. The results showed that caterpillar-infested corn plants significantly reduced the fitness of R. maidis leading to a prolonged nymphal development time, reduced adult longevity and fecundity compared to uninfested plants. Consequently, the population growth rate of corn aphids feeding on caterpillar-infested corn plants was significantly lower than on uninfested plants. As expected, the aphids performed significantly better on Lepidoptera-resistant Bt corn than on non-Bt corn when plants were infested with M. separata, since the caterpillars caused very little damage to the Bt plants. The current findings indicate that reduced M. separata infestation could benefit aphid development in Bt corn. Bt corn has the potential to be commercialized in China in the near future and aphids and other non-target pests should be monitored in the farming fields.


Assuntos
Afídeos/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Zea mays/genética , Animais , Toxinas de Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Produtos Agrícolas/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Herbivoria , Controle Biológico de Vetores
7.
Ecotoxicol Environ Saf ; 207: 111214, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890949

RESUMO

The potential risk of Bt (Bacillus thuringiensis) crops on non-target organisms (NTOs) has drawn a lot of public concerns. Despite a series of risk assessments of Bt crops on NTOs has been conducted, a quantitative approach which could support a precise judgment of their safety is required. In the present work, hazard quotient (HQ) was applied in the safety evaluation of three Bt rice events (Cry1Ab, Cry1C and Cry2Aa rice) on NTOs. Eight NTOs in different functional guilds associated with Bt rice were selected to conduct the tests. The results showed that the HQs of three Bt rice events for eight NTOs were all below the trigger value 1, while the HQ of Cry1Ab rice for one target pest Chilo suppressalis was three times higher than 1. Our results assured the reliability of the HQ and indicated that the three Bt rice events would pose no risks to the eight NTOs. Further testing of three Bt proteins on biological parameters of one NTO Nasonia virtipennis under no observed adverse effect concentration (NOAEC) confirmed the robustness of HQ assessment. We recommend that the HQ could be applied in tier-1 risk assessments of Bt crops on NTOs as a reference data standard, which would provide more clear and credible safety information of transgenic crops for the public and policy makers.


Assuntos
Toxinas de Bacillus thuringiensis/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Oryza/genética , Plantas Geneticamente Modificadas , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/metabolismo , Produtos Agrícolas/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Mariposas , Oryza/metabolismo , Controle Biológico de Vetores/métodos , Reprodutibilidade dos Testes
8.
Sci Rep ; 10(1): 16423, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009432

RESUMO

The potential risks of Bt rice on non-target arthropods (NTAs) should be evaluated and defined before commercial production. Recently, effects of Bt rice on NTAs under abiotic and biotic stress conditions attracted much attention. Here we reported the effects of Bt rice T1C-19 (Cry1C rice) on the non-target herbivore, Nilaparvata lugens (rice brown planthopper, BPH) with or without RDV (rice dwarf virus) infection conditions. BPH showed no feeding and oviposition preference between Bt rice T1C-19 and its non-Bt parental rice Minghui 63 (MH63), as well as between RDV-infected and RDV-free rice plants. Meanwhile, rice type, RDV infection status, and their interaction had little impacts on the survival, development and fecundity of BPH. By comparison with non-Bt control, Bt rice T1C-19 with or without RDV infection had no significant effects on the life-table parameters of BPH including rm, R0, T, DT and λ. Thus, it could be concluded that Bt rice T1C-19 doesn't affect the ecological fitness of BPH either under RDV stress or not.


Assuntos
Oryza/parasitologia , Oryza/virologia , Animais , Feminino , Fertilidade/fisiologia , Hemípteros/patogenicidade , Herbivoria/fisiologia , Masculino , Ninfa/patogenicidade , Oviposição/fisiologia , Plantas Geneticamente Modificadas/parasitologia , Plantas Geneticamente Modificadas/virologia , Reoviridae/patogenicidade
9.
Elife ; 92020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778222

RESUMO

Plants typically release large quantities of volatiles in response to herbivory by insects. This benefits the plants by, for instance, attracting the natural enemies of the herbivores. We show that the brown planthopper (BPH) has cleverly turned this around by exploiting herbivore-induced plant volatiles (HIPVs) that provide safe havens for its offspring. BPH females preferentially oviposit on rice plants already infested by the rice striped stem borer (SSB), which are avoided by the egg parasitoid Anagrus nilaparvatae, the most important natural enemy of BPH. Using synthetic versions of volatiles identified from plants infested by BPH and/or SSB, we demonstrate the role of HIPVs in these interactions. Moreover, greenhouse and field cage experiments confirm the adaptiveness of the BPH oviposition strategy, resulting in 80% lower parasitism rates of its eggs. Besides revealing a novel exploitation of HIPVs, these findings may lead to novel control strategies against an exceedingly important rice pest.


Assuntos
Hemípteros/parasitologia , Herbivoria , Mariposas/fisiologia , Oryza , Oviposição , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia , Animais , Feminino , Hemípteros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Ninfa/crescimento & desenvolvimento , Ninfa/parasitologia , Oryza/crescimento & desenvolvimento
10.
Plant J ; 103(6): 2236-2249, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593184

RESUMO

Advancements in -omics techniques provide powerful tools to assess the potential effects in composition of a plant at the RNA, protein and metabolite levels. These technologies can thus be deployed to assess whether genetic engineering (GE) causes changes in plants that go beyond the changes introduced by conventional plant breeding. Here, we compare the extent of transcriptome and metabolome modification occurring in leaves of four GE rice lines expressing Bacillus thuringiensis genes developed by GE and seven rice lines developed by conventional cross-breeding. The results showed that both types of crop breeding methods can bring changes at transcriptomic and metabolic levels, but the differences were comparable between the two methods, and were less than those between conventional non-GE lines were. Metabolome profiling analysis found several new metabolites in GE rice lines when compared with the closest non-GE parental lines, but these compounds were also found in several of the conventionally bred rice lines. Functional analyses suggest that the differentially expressed genes and metabolites caused by both GE and conventional cross-breeding do not involve detrimental metabolic pathways. The study successfully employed RNA-sequencing and high-performance liquid chromatography mass spectrometry technology to assess the unintended changes in new rice varieties, and the results suggest that GE does not cause unintended effects that go beyond conventional cross-breeding in rice.


Assuntos
Engenharia Genética/métodos , Oryza/genética , Melhoramento Vegetal/métodos , Bacillus thuringiensis/genética , Engenharia Genética/efeitos adversos , Metabolômica , Plantas Geneticamente Modificadas/efeitos adversos , Plantas Geneticamente Modificadas/genética , Transcriptoma/genética
13.
Insect Sci ; 27(1): 49-57, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29999564

RESUMO

In agro-ecosystems, plants are important mediators of interactions between their associated herbivorous insects and microbes, and any change in plants induced by one species may lead to cascading effects on interactions with other species. Often, such effects are regulated by phytohormones such as jasmonic acid (JA) and salicylic acid (SA). Here, we investigated the tripartite interactions among rice plants, three insect herbivores (Chilo suppressalis, Cnaphalocrocis medinalis or Nilaparvata lugens), and the causal agent of rice blast disease, the fungus Magnaporthe oryzae. We found that pre-infestation of rice by C. suppressalis or N. lugens but not by C. medinalis conferred resistance to M. oryzae. For C. suppressalis and N. lugens, insect infestation without fungal inoculation induced the accumulation of both JA and SA in rice leaves. In contrast, infestation by C. medinalis increased JA levels but reduced SA levels. The exogenous application of SA but not of JA conferred resistance against M. oryzae. These results suggest that pre-infestation by C. suppressalis or N. lugens conferred resistance against M. oryzae by increasing SA accumulation. These findings enhance our understanding of the interactions among rice plant, insects and pathogens, and provide valuable information for developing an ecologically sound strategy for controlling rice blast.


Assuntos
Hemípteros/fisiologia , Herbivoria , Magnaporthe/fisiologia , Mariposas/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Animais , Resistência à Doença/fisiologia
14.
Annu Rev Entomol ; 65: 273-292, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31594412

RESUMO

With 20% of the world's population but just 7% of the arable land, China has invested heavily in crop biotechnology to increase agricultural productivity. We examine research on insect-resistant genetically engineered (IRGE) crops in China, including strategies to promote their sustainable use. IRGE cotton, rice, and corn lines have been developed and proven efficacious for controlling lepidopteran crop pests. Ecological impact studies have demonstrated conservation of natural enemies of crop pests and halo suppression of crop-pest populations on a local scale. Economic, social, and human health effects are largely positive and, in the case of Bt cotton, have proven sustainable over 20 years of commercial production. Wider adoption of IRGE crops in China is constrained by relatively limited innovation capacity, public misperception, and regulatory inaction, suggesting the need for further financial investment in innovation and greater scientific engagement with the public. The Chinese experience with Bt cotton might inform adoption of other Bt crops in China and other developing countries.


Assuntos
Produtos Agrícolas , Plantas Geneticamente Modificadas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Engenharia Genética , Gossypium/genética , Proteínas Hemolisinas , Insetos
15.
GM Crops Food ; 10(3): 170-180, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31366274

RESUMO

Interspecific interactions are complex in agro-ecosystems and could be affected by agricultural technologies including transgenic crop planting. Few studies focused on the effects of Bt crops on the interspecific interactions of non-target organisms. Here we assessed the effects of transgenic cry2A rice (Cry2A rice) on the interspecific interaction between two rice planthoppers, namely, Nilaparvata lugens (the brown planthopper, BPH) and Sogatella furcifera (the white-backed planthopper, WBPH). Cry2A rice showed no significant effects on most biological parameters of these two rice planthoppers, except for wet weight of BPH female adults and development duration of WBPH female nymphs. In contrast, interspecific interactions between BPH and WBPH showed significant impacts on their biological parameters, no matter on Cry2A rice or non-transgenic control. In two-factor analysis combing rice line and interspecific interaction together, the interaction between these two factors did not affect most biological parameters of neither planthopper species, except for development duration of BPH female nymphs and WBPH nymphs (both male and female). Additionally, the egg distributions of BPH and WBPH had no significant differences between Cry2A and non-Cry2A treatments. Results of field experiments showed that Cry2A rice did not affect their population densities at most sampling dates in a five-year survey, and the interaction between BPH and WBPH showed no significant differences in both Cry2A and non-Cry2A rice paddies. In conclusion, our tested Cry2A rice would not affect the interspecific interactions between BPH and WBPH based both laboratory and field results.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Hemípteros/fisiologia , Proteínas Hemolisinas/metabolismo , Oryza/parasitologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Feminino , Proteínas Hemolisinas/genética , Interações Hospedeiro-Parasita , Masculino , Oryza/genética , Plantas Geneticamente Modificadas/parasitologia , Especificidade da Espécie
16.
Sci Rep ; 9(1): 8507, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186483

RESUMO

Transgenic rice lines expressing Bacillus thuringiensis (Bt) toxins have been successfully developed for the control of Chilo suppressalis. However, the evolution of insect resistance is a major threat to Bt rice durability. Bt toxins function by binding specific receptors in the midgut of target insects; specifically, cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran species. Here, we report the functional roles of cadherin CsCad in the midgut of C. suppressalis in Cry1Ab and Cry1C toxicity. We expressed a recombinant truncated CsCad peptide (CsCad-CR11-MPED) in Escherichia coli that included the eleventh cadherin repeat and MPED region. Based on ligand blotting and ELISA binding assays, the CsCad-CR11-MPED peptide specifically bound Cry1Ab with high affinity but weakly bound Cry1C. The CsCad-CR11-MPED peptide significantly enhanced the susceptibility of C. suppressalis larvae to Cry1Ab but not Cry1C. Furthermore, the knockdown of endogenous CsCad with Stealth siRNA reduced C. suppressalis larval susceptibility to Cry1Ab but not Cry1C, suggesting that CsCad plays differential functional roles in Cry1Ab and Cry1C intoxication in C. suppressalis. This information directly enhances our understanding of the potential resistance mechanisms of C. suppressalis against Bt toxins and may assist in the development of effective strategies for delaying insect resistance.


Assuntos
Proteínas de Bactérias/toxicidade , Caderinas/metabolismo , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Caderinas/química , Caderinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Cinética , Larva/efeitos dos fármacos , Larva/metabolismo , Ligantes , Mariposas/efeitos dos fármacos , Mariposas/genética , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Interferência de RNA
17.
J Invertebr Pathol ; 163: 8-10, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807734

RESUMO

Cost-effective Bt resistance monitoring programmes exist to manage insect resistance to Bt crops. F2 screening is widely used in detecting rare resistant alleles. One way to establish numerous isofemale lines for F2 bioassays is acquiring many field-trapped copulated females. However, it is difficult to obtain sufficient Chilo suppressalis isofemale lines because females have low mating rates and fecundity. We developed a new method to establish C. suppressalis isofemale lines with field-collected egg masses. No significant difference in detection ability was observed in the F2 screen between the old and new methods. Moreover, the new method is economical, convenient and efficient.


Assuntos
Bioensaio/métodos , Mariposas , Animais , Bacillus thuringiensis/metabolismo , Cruzamento/métodos , Endotoxinas , Feminino , Resistência a Inseticidas , Mariposas/genética , Oryza/genética , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas
18.
Toxins (Basel) ; 11(1)2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587774

RESUMO

The ladybird Propylea japonica, adults of the green lacewing Chrysoperla nipponensis and the honey bee Apis mellifera are common pollen feeders in many crop systems. They could therefore be directly exposed to Cry proteins in Bacillus thuringiensis (Bt)-transgenic crop fields by ingestion of pollen. They, or closely related species, are therefore often selected as surrogate test species in non-target risk assessment of Bt plants. In the current study, we evaluated the potential effects of the ingestion of Bt maize pollen containing the Cry1Ab/Cry1Ac fusion protein on various life-table parameters of the three pollen-feeding non-target species in laboratory feeding assays. The results showed that pupation rate and male adult fresh weight of P. japonica were significantly increased when fed pollen from Bt maize compared to control maize pollen, but other test life-table parameters were not affected. For the other two species, none of the tested life-table parameters (survival, pre-oviposition period, fecundity and adult fresh weight for C. nipponensis; survival and mean acinus diameter of hypopharyngeal glands for A. mellifera) differed between non-Bt and Bt maize pollen treatments. ELISA measurements confirmed the stability and uptake of the Cry protein by all three species during the feeding bioassays. In addition, a sensitive insect bioassay confirmed the bioactivity of the Cry1Ab/Cry1Ac protein in the Bt maize pollen used. Overall, the results suggested that the three pollen feeders are not sensitive to the Cry1Ab/Cry1Ac protein, and planting of the Bt maize variety will pose a negligible risk to P. japonica, adult C. nipponensis and adult A. mellifera.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Insetos/fisiologia , Plantas Geneticamente Modificadas/genética , Pólen/toxicidade , Zea mays/genética , Animais , Fusão Gênica Artificial , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Bioensaio , Endotoxinas/toxicidade , Feminino , Proteínas Hemolisinas/toxicidade , Larva/fisiologia , Masculino , Plantas Geneticamente Modificadas/toxicidade , Zea mays/toxicidade
19.
Ecotoxicol Environ Saf ; 165: 630-636, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30241091

RESUMO

The transgenic rice line T1C-19 provides high resistance to lepidopteran pests because of the synthesis of the Bacillus thuringiensis (Bt) insecticidal protein Cry1C. It thus shows good prospect for commercial planting in China. Species of Cladocera, an order of aquatic arthropods commonly found in aquatic ecosystems such as rice paddies, might be exposed to the insecticidal protein released from Bt-transgenic rice-straw residues. For the study reported herein, we used Daphnia magna (water flea) as a representative of Cladocera to evaluate whether aquatic arthropods are adversely affected when exposed to Bt rice-straw leachates. We exposed D. magna to M4 medium containing various volume percentages of medium that had been incubated with T1C-19 rice straw or rice straw from its non-transformed near-isoline Minghui 63 (MH63) for 21 days. Compared with pure M4 medium (control), the fitness and developmental and reproduction parameters of D. magna decreased significantly when exposed to rice-straw leachates; conversely, no significant differences between the T1C-19 and MH63 rice-straw leachate treatments were observed, indicating that the Bt rice straw leachate did not adversely affect this non-target species.


Assuntos
Proteínas de Bactérias/toxicidade , Daphnia/efeitos dos fármacos , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Plantas Geneticamente Modificadas/metabolismo , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bioensaio , Daphnia/fisiologia , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Oryza/genética , Oryza/metabolismo , Reprodução
20.
Proc Biol Sci ; 285(1883)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30051874

RESUMO

The area planted with insect-resistant genetically engineered crops expressing Bacillus thuringiensis (Bt) genes has greatly increased in many areas of the world. Given the nearby presence of non-Bt crops (including those planted as refuges) and non-crop habitats, pests targeted by the Bt trait have a choice between Bt and non-Bt crops or weeds, and their host preference may greatly affect insect management and management of pest resistance to Bt proteins. In this study, we examined the oviposition preference of the target pest of Bt rice, Chilo suppressalis, for Bt versus non-Bt rice plants as influenced by previous damage caused by C. suppressalis larvae. The results showed that C. suppressalis females had no oviposition preference for undamaged Bt or non-Bt plants but were repelled by conspecific-damaged plants whether Bt or non-Bt Consequently, C. suppressalis egg masses were more numerous on Bt plants than on neighbouring non-Bt plants both in greenhouse and in field experiments due to the significantly greater caterpillar damage on non-Bt plants. We also found evidence of poorer performance of C. suppressalis larvae on conspecific-damaged rice plants when compared with undamaged plants. GC-MS analyses showed that larval damage induced the release of volatiles that repelled mated C. suppressalis females in wind tunnel experiments. These findings suggest that Bt rice could act as a dead-end trap crop for C. suppressalis and thereby protect adjacent non-Bt rice plants. The results also indicate that the oviposition behaviour of target pest females should be considered in the development of Bt resistance management strategies.


Assuntos
Bacillus thuringiensis/química , Herbivoria , Mariposas/fisiologia , Oryza/química , Oviposição , Controle Biológico de Vetores , Animais , Cadeia Alimentar , Cromatografia Gasosa-Espectrometria de Massas , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Oryza/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA