Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6942, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938576

RESUMO

Allogeneic Vγ9Vδ2 (Vδ2) T cells have emerged as attractive candidates for developing cancer therapy due to their established safety in allogeneic contexts and inherent tumor-fighting capabilities. Nonetheless, the limited clinical success of Vδ2 T cell-based treatments may be attributed to donor variability, short-lived persistence, and tumor immune evasion. To address these constraints, we engineer Vδ2 T cells with enhanced attributes. By employing CD16 as a donor selection biomarker, we harness Vδ2 T cells characterized by heightened cytotoxicity and potent antibody-dependent cell-mediated cytotoxicity (ADCC) functionality. RNA sequencing analysis supports the augmented effector potential of Vδ2 T cells derived from CD16 high (CD16Hi) donors. Substantial enhancements are further achieved through CAR and IL-15 engineering methodologies. Preclinical investigations in two ovarian cancer models substantiate the effectiveness and safety of engineered CD16Hi Vδ2 T cells. These cells target tumors through multiple mechanisms, exhibit sustained in vivo persistence, and do not elicit graft-versus-host disease. These findings underscore the promise of engineered CD16Hi Vδ2 T cells as a viable therapeutic option for cancer treatment.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias Ovarianas , Feminino , Humanos , Interleucina-15/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Biomarcadores
2.
Cancers (Basel) ; 14(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35740670

RESUMO

Gamma delta (γδ) T cells are a minor population of T cells that share adaptive and innate immune properties. In contrast to MHC-restricted alpha beta (αß) T cells, γδ T cells are activated in an MHC-independent manner, making them ideal candidates for developing allogeneic, off-the-shelf cell-based immunotherapies. As the field of cancer immunotherapy progresses rapidly, different subsets of γδ T cells have been explored. In addition, γδ T cells can be engineered using different gene editing technologies that augment their tumor recognition abilities and antitumor functions. In this review, we outline the unique features of different subsets of human γδ T cells and their antitumor properties. We also summarize the past and the ongoing pre-clinical studies and clinical trials utilizing γδ T cell-based cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA