Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gigascience ; 11(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022701

RESUMO

BACKGROUND: The Glanville fritillary (Melitaea cinxia) butterfly is a model system for metapopulation dynamics research in fragmented landscapes. Here, we provide a chromosome-level assembly of the butterfly's genome produced from Pacific Biosciences sequencing of a pool of males, combined with a linkage map from population crosses. RESULTS: The final assembly size of 484 Mb is an increase of 94 Mb on the previously published genome. Estimation of the completeness of the genome with BUSCO indicates that the genome contains 92-94% of the BUSCO genes in complete and single copies. We predicted 14,810 genes using the MAKER pipeline and manually curated 1,232 of these gene models. CONCLUSIONS: The genome and its annotated gene models are a valuable resource for future comparative genomics, molecular biology, transcriptome, and genetics studies on this species.


Assuntos
Borboletas , Fritillaria , Animais , Borboletas/genética , Mapeamento Cromossômico , Cromossomos/genética , Fritillaria/genética , Genoma , Masculino
2.
Plant Direct ; 4(2): e00206, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128474

RESUMO

Strigolactones are a group of phytohormones that control developmental processes including shoot branching and various plant-environment interactions in plants. We previously showed that the strigolactone perception mutant more axillary branches 2 (max2) has increased susceptibility to plant pathogenic bacteria. Here we show that both strigolactone biosynthesis (max3 and max4) and perception mutants (max2 and dwarf14) are significantly more sensitive to Pseudomonas syringae DC3000. Moreover, in response to P. syringae infection, high levels of SA accumulated in max2 and this mutant was ozone sensitive. Further analysis of gene expression revealed no major role for strigolactone in regulation of defense gene expression. In contrast, guard cell function was clearly impaired in max2 and depending on the assay used, also in max3, max4, and d14 mutants. We analyzed stomatal responses to stimuli that cause stomatal closure. While the response to abscisic acid (ABA) was not impaired in any of the mutants, the response to darkness and high CO2 was impaired in max2 and d14-1 mutants, and to CO2 also in strigolactone synthesis (max3, max4) mutants. To position the role of MAX2 in the guard cell signaling network, max2 was crossed with mutants defective in ABA biosynthesis or signaling. This revealed that MAX2 acts in a signaling pathway that functions in parallel to the guard cell ABA signaling pathway. We propose that the impaired defense responses of max2 are related to higher stomatal conductance that allows increased entry of bacteria or air pollutants like ozone. Furthermore, as MAX2 appears to act in a specific branch of guard cell signaling (related to CO2 signaling), this protein could be one of the components that allow guard cells to distinguish between different environmental conditions.

3.
Stand Genomic Sci ; 12: 87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29276572

RESUMO

Bacteria of the genus Pectobacterium are economically important plant pathogens that cause soft rot disease on a wide variety of plant species. Here, we report the genome sequence of Pectobacterium carotovorum strain SCC1, a Finnish soft rot model strain isolated from a diseased potato tuber in the early 1980's. The genome of strain SCC1 consists of one circular chromosome of 4,974,798 bp and one circular plasmid of 5524 bp. In total 4451 genes were predicted, of which 4349 are protein coding and 102 are RNA genes.

4.
Front Plant Sci ; 7: 1945, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066496

RESUMO

Cuticular defects trigger a battery of reactions including enhanced reactive oxygen species (ROS) production and resistance to necrotrophic pathogens. However, the source of ROS generated by such impaired cuticles has remained elusive. Here, we report the characterization of Arabidopsis thaliana ohy1 mutant, a Peroxidase 57 (PER57) - overexpressing line that demonstrates enhanced defense responses that result both from increased accumulation of ROS and permeability of the leaf cuticle. The ohy1 mutant was identified in a screen of A. thaliana seedlings for oligogalacturonides (OGs) insensitive/hypersensitive mutants that exhibit altered growth retardation in response to exogenous OGs. Mutants impaired in OG sensitivity were analyzed for disease resistance/susceptibility to the necrotrophic phytopathogens Botrytis cinerea and Pectobacterium carotovorum. In the ohy1 line, the hypersensitivity to OGs was associated with resistance to the tested pathogens. This PER57 overexpressing line exhibited a significantly more permeable leaf cuticle than wild-type plants and this phenotype could be recapitulated by overexpressing other class III peroxidases. Such peroxidase overexpression was accompanied by the suppressed expression of cutin biosynthesis genes and the enhanced expression of genes associated with OG-signaling. Application of ABA completely removed ROS, restored the expression of genes associated with cuticle biosynthesis and led to decreased permeability of the leaf cuticle, and finally, abolished immunity to B. cinerea. Our work demonstrates that increased peroxidase activity increases permeability of the leaf cuticle. The loss of cuticle integrity primes plant defenses to necrotrophic pathogens via the activation of DAMP-responses.

5.
Plant Sci ; 182: 19-28, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22118612

RESUMO

Plants are continuously challenged by abiotic and biotic stress factors and need to mount appropriate responses to ensure optimal growth and survival. We have identified ERD15 as a central component in several stress responses in Arabidopsis thaliana. Comparative genomics demonstrates that ERD15 is a member of a small but highly conserved protein family ubiquitous but specific to the plant kingdom. The origin of ERD15 family of proteins can be traced to the time of emergence of land plants. The presence of the conserved PAM2 motif in ERD15 proteins is indicative of a possible interaction with poly(A) binding proteins and could suggest a role in posttranscriptional regulation of gene expression. The function of the other highly conserved motifs in ERD15 remains to be elucidated. The biological role of all ERD15 family members studied so far appears associated to stress responses and stress adaptation. Studies in Arabidopsis demonstrate a role in abiotic stress tolerance where ERD15 is a negative regulator of ABA signaling. The role in ABA signaling may also explain how ERD15 regulates stomatal aperture and consequently controls plant water relations.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estresse Fisiológico/fisiologia , Adaptação Fisiológica , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/metabolismo , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA