Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Neurosci ; 70(1): 102-111, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31520365

RESUMO

The lack of cerebral creatine (Cr) causes intellectual disability and epilepsy. In addition, a significant portion of individuals with Cr transporter (Crt) deficiency (CTD), the leading cause of cerebral Cr deficiency syndromes (CCDS), are diagnosed with attention-deficit hyperactivity disorder. While the neurological effects of CTD are clear, the mechanisms that underlie these deficits are unknown. Part of this is due to the heterogenous nature of the brain and the unique metabolic demands of specific neuronal systems. Of particular interest related to Cr physiology are dopaminergic neurons, as many CCDS patients have ADHD and Cr has been implicated in dopamine-associated neurodegenerative disorders, such as Parkinson's and Huntington's diseases. The purpose of this study was to examine the effect of a loss of the Slc6a8 (Crt) gene in dopamine transporter (Slc6a3; DAT) expressing cells on locomotor activity and motor function as the mice age. Floxed Slc6a8 (Slc6a8flox) mice were mated to DATIREScre expressing mice to generate DAT-specific Slc6a8 knockouts (dCrt-/y). Locomotor activity, spontaneous activity, and performance in the challenging beam test were evaluated monthly in dCrt-/y and control (Slc6a8flox) mice from 3 to 12 months of age. dCrt-/y mice were hyperactive compared with controls throughout testing. In addition, dCrt-/y mice showed increased rearing and hindlimb steps in the spontaneous activity test. Latency to cross the narrow bridge was increased in dCrt-/y mice while foot slips were unchanged. Taken together, these data suggest that the lack of Cr in dopaminergic neurons causes hyperactivity while sparing motor function.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Creatina/deficiência , Neurônios Dopaminérgicos/metabolismo , Locomoção , Proteínas de Membrana Transportadoras/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Animais , Encefalopatias Metabólicas Congênitas/fisiopatologia , Creatina/genética , Deleção de Genes , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética
2.
Behav Brain Res ; 377: 112254, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31542396

RESUMO

Approximately 20% of adults in the U.S. will experience an affective disorder during their life. While it is well established that serotonin (5-HT) is a crucial factor in mood, impaired cellular bioenergetics are also implicated. Creatine (Cr), through the Cr/Phospho-Cr (PCr) shuttle, maintains high ATP concentrations in the neuron. This system may be implicated in the etiology of affective disorders, as reduced Cr, PCr, and ATP are often seen in the brains of affected patients. To address this issue, Cr transporter (Crt) deficient male mice (Slc6a8-/y) and female mice heterozygous for Crt expression (Slc6a8+/-) were used to evaluate how a Cr deficient system would alter affective-like behaviors. Slc6a8-/y and Slc6a8+/- mice had faster escape latencies in learned helplessness, indicating a potential resilience to behavioral despair. Slc6a8-/y had decrease latency to immobility in the tail-suspension test and Slc6a8+/- had increased open entries in elevated zero maze, but all other variables matched those of wildtype mice, however. Slc6a8-/y mice have increased 5-hydroxyindoleacetic acid content in the hippocampus and striatum and increased monoamine oxidase protein and tryptophan hydroxylase-2 protein content in the hippocampus, while 5-HT levels are unchanged. This indicates an alteration to the 5-HTergic system in Cr deficient mice. Our results indicate that Cr plays a complex role in affective disorders and 5-HT, warranting further investigation.


Assuntos
Ansiedade , Comportamento Animal/fisiologia , Corpo Estriado/metabolismo , Creatina/metabolismo , Depressão , Desamparo Aprendido , Hipocampo/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Resiliência Psicológica , Serotonina/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Feminino , Masculino , Proteínas de Membrana Transportadoras/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA