Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
EFSA J ; 19(4): e06564, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33968252

RESUMO

The food enzyme α-amylase (1,4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the genetically modified Bacillus licheniformis strain DP-Dzb52 by Danisco US Inc. The production strain contains multiple copies of an antimicrobial resistance gene. However, based on the absence of viable cells and DNA from the production organism in the food enzyme, this is not considered to be a risk. The α-amylase is intended to be used in starch processing for the production of glucose syrups, brewing processes and distilled alcohol production. Since residual amounts of the food enzyme are removed by the purification steps applied during the production of glucose syrups and distillation, no dietary exposure was calculated. Based on the maximum use levels recommended for the brewing processes and individual data from the EFSA Comprehensive European Food Consumption Database, dietary exposure to the enzyme-total organic solids (TOS) was estimated to be up to 0.145 TOS/kg body weight per day in European populations. The toxicity studies were carried out with another α-amylase from B. licheniformis strain DP-Dzb54, considered by the Panel as a suitable substitute. Toxicological tests indicated that there was no concern with respect to genotoxicity or systemic toxicity. A no observed adverse effect level was identified in rats which, compared with the dietary exposure, results in a margin of exposure of at least 750. A search for similarity of the amino acid sequence to known allergens was made and one match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions can be excluded in distilled alcohol production and is considered low when the enzyme is used in starch processing and brewing. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

2.
EFSA J ; 19(3): e06431, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33727966

RESUMO

The food enzyme endo-1,3(4)-ß-glucanase (3(or 4)-ß-d-glucan 3(4)-glucanohydrolase; EC 3.2.1.6) is produced with a genetically modified Bacillus subtilis strain DP-Ezm28 by Danisco US Inc. The genetic modifications do not give rise to safety concerns. The production strain of the food enzyme contains multiple copies of a known antimicrobial resistance gene. However, based on the absence of viable cells and DNA from the production organism in the food enzyme, this is not considered to be a risk. The food enzyme is intended to be used in distilled alcohol production and brewing processes. Since residual amounts of total organic solids (TOS) are removed by distillation, dietary exposure was only calculated for brewing processes. Based on the maximum use levels recommended for brewing processes and individual data from the EFSA Comprehensive European Food Database, dietary exposure to the food enzyme-total organic solids was estimated to be up to 0.183 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1,000 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, results in a margin of exposure of at least 5464. Similarity of the amino acid sequence to those of known allergens was searched and two matches were found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood is considered low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

3.
EFSA J ; 19(1): e06367, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33505529

RESUMO

The food enzyme alternansucrase (sucrose:1,6(1,3)-α-d-glucan 6(3)-α-d-glucosyltransferase, EC 2.4.1.140) is produced with a non-genetically modified Leuconostoc citreum strain NRRL B-30894 by Cargill Incorporated. As a consequence of the absence of antimicrobial resistance genes identified in its genome, the production strain meets the criteria to qualify for the Qualified Presumption of Safety (QPS) approach to safety assessment. As no other concerns arising from the microbial source or from the manufacturing process have been identified, the Panel considers that toxicological tests are not needed for the assessment of this food enzyme. The alternansucrase food enzyme is intended to be used for the manufacture of α-d-glucan oligosaccharides as a sweetening agent. The purification processes applied to syrups produced from sucrose with alternansucrase are expected to largely remove the food enzyme. Any residual TOS remaining in the final product would consist of non-hazardous material. This is based on the QPS status of the production organism, the medium components and the identified material used in downstream processing. Consequently, the Panel decided that dietary exposure did not need to be calculated. Similarity of the amino acid sequence to those of known allergens was searched and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

4.
EFSA J ; 19(1): e06365, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437320

RESUMO

The food enzyme cellulase (4-(1,3;1,4)-ß-d-glucan 4-glucanohydrolase; EC 3.2.1.4) is produced with the non-genetically modified Penicillium funiculosum strain Lzc35 by Danisco US Inc. The cellulase is intended to be used in distilled alcohol production, baking and brewing processes. Since residual amounts of total organic solids (TOS) are removed by distillation, dietary exposure was only calculated for baking and brewing processes. Based on the proposed maximum use levels, dietary exposure to the food enzyme-TOS was estimated to be up to 0.416 mg TOS/kg body weight (bw) per day. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 84 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 200. Similarity of the amino acid sequence of the food enzyme to those of known allergens was searched and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

5.
EFSA J ; 18(1): e05975, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626505

RESUMO

The food enzyme with xylanases (4-ß-d-xylan xylanohydrolase, EC 3.2.1.8) and glucanases active against ß-1,4 linkages is produced with the non-genetically modified fungus Disporotrichum dimorphosporum strain DXL by DSM Food Specialities B.V. The food enzyme is intended to be used in brewing processes. Based on the maximum use level and individual data from the EFSA Comprehensive European Food Database, dietary exposure to the food enzyme-Total Organic Solids (TOS) was estimated to be up to 0.167 mg TOS/kg body weight (bw) per day. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level (NOAEL) at the highest dose of 199 mg TOS/kg bw per day that, compared with the estimated dietary exposure, results in a high Margin of Exposure of at least 1,100. Similarity of amino acid sequences of the identified xylanases and ß-glucanases to those of known allergens was searched. No matches were found for two endo-1,4-ß-glucanases and two endo-1,4-ß-xylanases. However, for a third endo-ß-1,4-glucanase the search resulted in matches with three mite protein sequences. While incidental cases of allergic reactions to endo-1,4-ß-xylanases and ß-glucanases have been reported after inhalation in respiratory sensitised individuals in the workplace, no allergic reactions to xylanases or ß-glucanases have been reported in the literature after oral exposure. The Panel considered that, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

6.
EFSA J ; 18(5): e06128, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-37649515

RESUMO

The food enzyme with ß-glucanase and ß-xylanase (4-ß-d-xylan xylanohydrolase, EC 3.2.1.8) activities is produced with the non-genetically modified Trichoderma reesei (strain DP-Nya67) by DuPont. The food enzyme is intended to be used in brewing processes, grain treatment for the production of starch and gluten fractions, and distilled alcohol production. Since residual amounts of the food enzyme are removed by distillation and during grain treatment, dietary exposure was only calculated for brewing processes. Based on the maximum recommended use levels for brewing processes, dietary exposure to the food enzyme-Total Organic Solids (TOS) was estimated to be up to 4.585 mg TOS/kg body weight (bw) per day. Since the compositional data provided was insufficient to characterise the food enzyme batches used for toxicological testing, their suitability for use in the toxicological tests could not be established. As result, the toxicological studies provided were not further considered by the Panel. Similarities of the amino acid sequences to those of known allergens were searched and no matches were found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood to occur is considered to be low. In the absence of compositional data sufficient to characterise the food enzyme batches used for toxicological testing, the Panel is unable to complete its assessment of the safety of the food enzyme.

7.
EFSA J ; 17(1): e05547, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626092

RESUMO

The food enzyme is a glucose isomerase (d-xylose aldose-ketose-isomerase; EC 5.3.1.5) produced with a non-genetically modified Streptomyces murinus strain NZYM-GA by Novozymes A/S. The glucose isomerase is intended only to be used in an immobilised form in glucose isomerisation for the production of high fructose syrups. Residual amounts of total organic solids are removed by the purification steps applied during the production of high fructose syrups using the immobilised enzyme; consequently, dietary exposure was not calculated. Genotoxicity tests did not raise a safety concern. Similarity of the amino acid sequence to those of known allergens was searched and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood to occur is considered to be low. Based on the data provided, the immobilisation process and the removal of total organic solids during the production of high fructose syrups, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

8.
EFSA J ; 17(1): e05548, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626093

RESUMO

The food enzyme lysophospholipase (EC 3.1.1.5) is produced with the genetically modified Trichoderma reesei strain RF7206 by AB Enzymes GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and recombinant DNA. The lysophospholipase food enzyme is intended to be used in starch processing for the production of glucose syrups. Residual amounts of total organic solids (TOS) are removed by the purification steps applied during the production of glucose syrups, consequently, dietary exposure was not calculated. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level at the highest dose tested of 927 mg TOS/kg body weight (bw) per day. Similarity of the amino acid sequence to those of known allergens was searched and no match was found. The Panel considered that, under the intended condition of use, the risk of allergic sensitisation and elicitation reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood of such reactions to occur is considered to be low. Based on the data provided and the removal of TOS during the intended food production process, the Panel concluded that this food enzyme does not raise safety concerns under the intended conditions of use.

9.
EFSA J ; 17(1): e05553, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626098

RESUMO

The food enzyme alpha-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with a genetically modified strain of Trichoderma reesei by Danisco US Inc. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and recombinant DNA. This α-amylase is intended to be used in distilled alcohol production and brewing processes. Residual amounts of total organic solids (TOS) are removed by distillation; consequently, dietary exposure was not calculated for this use. Based on the maximum use levels recommended for the brewing processes and individual data from the EFSA Comprehensive European Food Consumption Database, dietary exposure to the food enzyme-TOS was estimated to be up to 1.701 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests with the food enzyme did not indicate a genotoxic concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no-observed-adverse-effect level (NOAEL) at the highest dose of 230 mg TOS/kg bw per day. Similarity of the amino acid sequence to those of known allergens was searched and one match was found. The Panel considered that, under the intended condition of use, the risk of allergic sensitisation and elicitation reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood is considered low. Based on the removal of residues of the food enzyme during distillation, the Panel concluded that the use of this enzyme in the distilled alcohol production is safe. When used in brewing processes, the margin of exposure calculated from the data provided is only (at least) 135, but no safety issues were identified.

10.
EFSA J ; 17(1): e05554, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32626099

RESUMO

The food enzyme pullulanase (pullulan 6-α-glucanohydrolase; EC 3.2.1.41) is produced with a genetically modified Bacillus licheniformis (strain DP-Dzp39) by Danisco US Inc. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its recombinant DNA. This pullulanase is intended to be used in brewing processes, starch processing for glucose syrups production and distilled alcohol production. Residual amounts of total organic solids (TOS) are removed by distillation and by the purification steps applied during the production of glucose syrups, consequently, dietary exposure was not calculated for these food processes. For brewery products, based on the maximum use level recommended for the brewing processes and individual data from the EFSA Comprehensive European Food Consumption Database, dietary exposure to the food enzyme-TOS was estimated to be up to 0.053 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests with the food enzyme did not raise concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no-observed-adverse-effect level at the highest dose of 500 mg TOS/kg bw per day that, compared to the estimated dietary exposure, results in sufficiently high margin of exposure (at least 9,400). The amino acid sequence of the food enzyme did not match those of known allergens. The Panel considered that, under the intended condition of use, the risk of allergic sensitisation and elicitation reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood is considered low. Based on the data provided, the Panel concluded that this food enzyme does not raise safety concerns under the intended conditions of use.

11.
EFSA J ; 17(10): e05827, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32626126

RESUMO

The food enzyme ß-d-galactosidase galactohydrolase (EC 3.2.1.23) is produced with Bacillus sp. strain M3-1 by GenoFocus Inc. The food enzyme ß-galactosidase is intended to be used in the manufacture of galactooligosaccharides (GOS). Since residual amounts of total organic solids are removed by the purification steps applied during the production of GOS, toxicological studies were considered not necessary and no dietary exposure was calculated. Similarity of the amino acid sequence of the food enzyme to those of known allergens was searched and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood of such reactions to occur is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

12.
EFSA J ; 17(11): e05899, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32626183

RESUMO

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase, EC 3.2.1.1) is produced with a non-genetically modified Aspergillus oryzae (strain DP-Bzb41) by Danisco US Inc. (USA). The α-amylase food enzyme is intended to be used in baking, brewing, distilled alcohol production and starch processing for the glucose syrup production. Based on the maximum use levels for baking and brewing processes and individual data from the EFSA Comprehensive European Food Database, dietary exposure to the food enzyme-Total Organic Solids (TOS) was estimated to be up to 2.59 mg TOS/kg body weight (bw) per day. Since residual amounts of TOS are removed during distilled alcohol production and by the purification steps applied during starch processing, dietary exposure for these processes was not calculated. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level (NOAEL) of 1,000 mg TOS/kg bw per day, the highest dose tested. Comparison with the estimated dietary exposure, results in a margin of exposure of at least 386. Similarity of the amino acid sequence to those of known allergens was searched and one match to respiratory allergen was found (an amylase from another strain of A. oryzae). The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

13.
EFSA J ; 17(11): e05901, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32626185

RESUMO

The food enzyme 1,4-ß-d-xylan xylanohydrolase (EC 3.2.1.8) is produced with the non-genetically modified strain Bacillus pumilus (strain BLXSC) by Advanced Enzyme Technologies Ltd. The food enzyme is intended to be used in baking processes, grain treatment for the production of starch and gluten fractions, and distilled alcohol production. Since residual amounts of the food enzyme are removed by distillation and during grain treatment, dietary exposure was only calculated for baking processes. Based on the maximum recommended use levels for baking processes, and individual data from the EFSA Comprehensive European Food Database, dietary exposure to the food enzyme-Total Organic Solids (TOS) was estimated to be up to 0.138 mg TOS/kg body weight (bw) per day. As the production strain of B. pumilus meets the requirements for a Qualified Presumption of Safety (QPS) approach, no toxicological data are required. Similarity of the amino acid sequence to those of known allergens was searched and no match was found. The Panel considered that under the intended conditions of use (other than distilled alcohol production), the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but is considered to be low. Based on the QPS status of the production strain and the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

14.
EFSA J ; 17(3): e05629, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32626255

RESUMO

The food enzyme glucose oxidase (ß-d-glucose:oxygen 1-oxidoreductase; EC 1.1.3.4) is produced with a genetically modified Aspergillus niger strain ZGL by DSM Food Specialties B.V.. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and recombinant DNA. The glucose oxidase is intended to be used in baking processes. Based on the maximum use levels, dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.004 mg TOS/kg body weight (bw) per day. The toxicity studies were carried out with an asparaginase from A. niger (strain ASP). The Panel considered this enzyme as a suitable substitute to be used in the toxicological studies, because they derive from the same recipient strain, the location of the inserts are comparable, no partial inserts were present and the production methods are essentially the same. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level (NOAEL) at the highest dose of 1,038 and 1,194 mg TOS/kg bw per day (for males and females, respectively) that, compared with the estimated dietary exposure, results in a sufficiently high margin of exposure (MoE) (of at least 260,000). Similarity of the amino acid sequence to those of known allergens was searched and one match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood to occur is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

15.
EFSA J ; 17(3): e05630, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32626256

RESUMO

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) is produced with a genetically modified Aspergillus niger strain LFS by DSM Food Specialties B.V.. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and recombinant DNA. The triacylglycerol lipase food enzyme is intended to be used in baking processes. Based on the maximum use levels, dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.020 mg TOS/kg body weight (bw) per day. The toxicity studies were carried out with an asparaginase from A. niger (strain ASP). The Panel considered this enzyme as a suitable substitute to be used in the toxicological studies, because they derive from the same recipient strain, the location of the inserts are comparable, no partial inserts were present and the production methods are essentially the same. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level (NOAEL) at the highest dose of 1,038 and 1,194 mg TOS/kg bw per day (for males and females, respectively) that, compared with the estimated dietary exposure, results in a sufficiently high margin of exposure (MoE) (of at least 51,900). Similarity of the amino acid sequence to those of known allergens was searched and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood to occur is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

16.
EFSA J ; 17(3): e05631, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32626257

RESUMO

The food enzyme has three declared activities (endo-1,3(4)-ß-glucanase EC 3.2.1.6, endo-1,4-ß-xylanase EC 3.2.1.8 and cellulase (endo-1,4-ß-d-glucanase EC 3.2.1.4)) and is produced with a non-genetically modified Mycothermus thermophiloides strain by Novozymes A/S. It is intended to be used in baking and brewing processes. For the two intended uses, based on the maximum use levels recommended and individual data from the EFSA Comprehensive European Food Database, dietary exposure to the food enzyme-Total Organic Solids (TOS) was estimated to be up to 0.411 mg TOS/kg body weight (bw) per day. Genotoxicity tests did not raise a safety concern. Systemic toxicity was assessed by a repeated dose 90-day oral toxicity study in rats. From this study, the Panel identified a no observed adverse effect level (NOAEL) of at least 620 mg TOS/kg bw per day, the highest dose tested. When the NOAEL is compared to the estimated dietary exposure, this results in a margin of exposure of at least 1,500. A search was made for similarity of the amino acid sequence of the declared activities with those of known allergens. Four matches were found with endo-1,3(4)-ß-glucanase to known respiratory allergens, two from dust mites and two Aspergillus fumigatus allergens. The Panel considered that an allergic reaction upon oral ingestion of enzymes produced by M. thermophiloides strain NZYM-ST in individuals respiratory sensitised to these allergens cannot be excluded, but the likelihood is considered to be low. Overall, the Panel concluded that, under the intended conditions of use and based on the data provided, this food enzyme does not give rise to safety concerns.

17.
EFSA J ; 17(5): e05680, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32626309

RESUMO

The food enzyme alpha-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with a non-genetically modified Aspergillus niger (strain DP-Azb60) by Danisco US Inc. The food enzyme is free from viable cells of the production organism. The α-amylase is intended to be used in baking processes. Based on the maximum use levels, dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.503 mg TOS/kg body weight (bw) per day. Genotoxicity tests with the food enzyme did not indicate a genotoxic concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no-observed-adverse-effect level (NOAEL) at the highest dose of 1,000 mg TOS/kg bw per day that, compared with the estimated dietary exposure, results in a sufficiently high margin of exposure (of at least 1,988). Similarity of the amino acid sequence to those of known allergens was searched and one match was found to Asp o 21, an alpha-amylase from Aspergillus oryzae. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood is considered low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

18.
EFSA J ; 17(5): e05681, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32626310

RESUMO

The food enzyme alpha-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with a genetically modified strain of Bacillus subtilis strain NBA by DSM Food Specialities B.V. This α-amylase is intended to be used in baking processes. The genetic modifications do not give rise to safety concerns and the food enzyme is free from viable cells of the production organism and recombinant DNA. The parental strain meets the required qualifications to be considered as a Qualified Presumption of Safety (QPS) organism and is therefore presumed to be safe. Since the production strain is not cytotoxic and since the introduced genetic modifications do not raise safety concerns, the presumption of safety made for the parental strain is extended to the production strain. The conclusions on safety of the food enzyme are made following the QPS approach in relation to the production strain, with additional consideration of the conditions of manufacture. However, the Panel considers no toxicological studies other than assessment of allergenicity necessary. This is based on the QPS status of the production strain and the absence of any hazards from the product and downstream processing. Based on the maximum use level recommended for the baking processes and individual data from the European Food Safety Authority (EFSA) Comprehensive European Food Consumption Database, dietary exposure was estimated to be up to 0.093 mg TOS/kg body weight per day in European populations. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood is considered low. Based on the data provided, the Panel concluded that this food enzyme does not raise safety concerns under the intended conditions of use.

19.
EFSA J ; 17(5): e05684, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32626312

RESUMO

The food enzyme glucan 1,4-α-maltotetraohydrolase (4-α-d-glucan maltotetraohydrolase, EC 3.2.1.60) is produced with a genetically modified Bacillus licheniformis strain DP-Dzr46 by Danisco US Inc. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and recombinant DNA. The glucan 1,4-α-maltotetraohydrolase food enzyme is intended to be used in baking processes. Based on the maximum use levels, dietary exposure to the food enzyme-Total Organic Solids (TOS) was estimated to be up to 0.405 mg TOS/kg body weight (bw) per day in European populations. The toxicity studies were carried out with another glucan 1,4-α-maltotetraohydrolase from B. licheniformis (strain DP-Dzf24). The Panel considered this food enzyme as a suitable substitute to be used in the toxicological studies, because it derives from the same recipient strain as strain DP-Dzr46, the location of the inserts is comparable, no partial inserts were present and the production methods are comparable. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level (NOAEL) at the highest dose of 94 mg TOS/kg bw per day that, compared with the estimated dietary exposure, results in a sufficiently high margin of exposure of at least 232. Similarity of the amino acid sequence to those of known allergens was searched and none was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

20.
EFSA J ; 17(6): e05738, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32626356

RESUMO

The food enzyme α-amylase (1,4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the genetically modified Bacillus licheniformis strain DP-Dzb44 by Danisco US Inc. The production strain of the food enzyme contains multiple copies of a known antimicrobial resistance gene. However, based on the absence of viable cells and DNA from the production organism in the food enzyme, this is not considered to be a risk. The α-amylase is intended to be used in distilled alcohol production. Since residual amounts of the food enzyme are removed by distillation, toxicological studies were not considered necessary and no dietary exposure was calculated. Similarity of the amino acid sequence to those of known allergens was searched and one match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions can be excluded. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA