Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(8): 1488-1500, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38300720

RESUMO

PURPOSE: Safety and efficacy of acapatamab, a prostate-specific membrane antigen (PSMA) x CD3 bispecific T-cell engager were evaluated in a first-in-human study in metastatic castration-resistant prostate cancer (mCRPC). PATIENTS AND METHODS: Patients with mCRPC refractory to androgen receptor pathway inhibitor therapy and taxane-based chemotherapy received target acapatamab doses ranging from 0.003 to 0.9 mg in dose exploration (seven dose levels) and 0.3 mg (recommended phase II dose) in dose expansion intravenously every 2 weeks. Safety (primary objective), pharmacokinetics, and antitumor activity (secondary objectives) were assessed. RESULTS: In all, 133 patients (dose exploration, n = 77; dose expansion, n = 56) received acapatamab. Cytokine release syndrome (CRS) was the most common treatment-emergent adverse event seen in 97.4% and 98.2% of patients in dose exploration and dose expansion, respectively; grade ≥ 3 was seen in 23.4% and 16.1%, respectively. Most CRS events were seen in treatment cycle 1; incidence and severity decreased at/beyond cycle 2. In dose expansion, confirmed prostate-specific antigen (PSA) responses (PSA50) were seen in 30.4% of patients and radiographic partial responses in 7.4% (Response Evaluation Criteria in Solid Tumors 1.1). Median PSA progression-free survival (PFS) was 3.3 months [95% confidence interval (CI): 3.0-4.9], radiographic PFS per Prostate Cancer Clinical Trials Working Group 3 was 3.7 months (95% CI: 2.0-5.4). Acapatamab induced T-cell activation and increased cytokine production several-fold within 24 hours of initiation. Treatment-emergent antidrug antibodies were detected in 55% and impacted serum exposures in 36% of patients in dose expansion. CONCLUSIONS: Acapatamab was safe and tolerated and had a manageable CRS profile. Preliminary signs of efficacy with limited durable antitumor activity were observed. Acapatamab demonstrated pharmacokinetic and pharmacodynamic activity.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Antígeno Prostático Específico , Meia-Vida , Resultado do Tratamento , Antineoplásicos/uso terapêutico , Antagonistas de Receptores de Andrógenos/uso terapêutico , Linfócitos T/metabolismo
2.
Front Immunol ; 14: 1261070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942314

RESUMO

Introduction: In oncology, anti-drug antibody (ADA) development that significantly curtails response durability has not historically risen to a level of concern. The relevance and attention ascribed to ADAs in oncology clinical studies have therefore been limited, and the extant literature on this subject scarce. In recent years, T cell engagers have gained preeminence within the prolific field of cancer immunotherapy. These drugs whose mode of action is expected to potently stimulate anti-tumor immunity, may potentially induce ADAs as an unintended corollary due to an overall augmentation of the immune response. ADA formation is therefore emerging as an important determinant in the successful clinical development of such biologics. Methods: Here we describe the immunogenicity and its impact observed to pasotuxizumab (AMG 212), a prostate-specific membrane antigen (PSMA)-targeting bispecific T cell engager (BiTE®) molecule in NCT01723475, a first-in-human (FIH), multicenter, dose-escalation study in patients with metastatic castration-resistant prostate cancer (mCRPC). To explain the disparity in ADA incidence observed between the SC and CIV arms of the study, we interrogated other patient and product-specific factors that may have explained the difference beyond the route of administration. Results: Treatment-emergent ADAs (TE-ADA) developed in all subjects treated with at least 1 cycle of AMG 212 in the subcutaneous (SC) arm. These ADAs were neutralizing and resulted in profound exposure loss that was associated with contemporaneous reversal of initial Prostate Surface Antigen (PSA) responses, curtailing durability of PSA response in patients. Pivoting from SC to a continuous intravenous (CIV) administration route remarkably yielded no subjects developing ADA to AMG 212. Through a series of stepwise functional assays, our investigation revealed that alongside a more historically immunogenic route of administration, non-tolerant T cell epitopes within the AMG 212 amino acid sequence were likely driving the high-titer, sustained ADA response observed in the SC arm. Discussion: These mechanistic insights into the AMG 212 ADA response underscore the importance of performing preclinical immunogenicity risk evaluation as well as advocate for continuous iteration to better our biologics.


Assuntos
Produtos Biológicos , Próstata , Masculino , Humanos , Análise de Causa Fundamental , Antígeno Prostático Específico/metabolismo , Anticorpos/metabolismo , Antígenos de Superfície/metabolismo , Linfócitos T
3.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614196

RESUMO

Large numbers of neutrophils infiltrate tumors and comprise a notable component of the inflammatory tumor microenvironment. While it is established that tumor cells exhibit the Warburg effect for energy production, the contribution of the neutrophil metabolic state to tumorigenesis is unknown. Here, we investigated whether neutrophil infiltration and metabolic status promotes tumor progression in an orthotopic mouse model of pancreatic ductal adenocarcinoma (PDAC). We observed a large increase in the proportion of neutrophils in the blood and tumor upon orthotopic transplantation. Intriguingly, these tumor-infiltrating neutrophils up-regulated glycolytic factors and hypoxia-inducible factor 1-alpha (HIF-1α) expression compared to neutrophils from the bone marrow and blood of the same mouse. This enhanced glycolytic signature was also observed in human PDAC tissue samples. Strikingly, neutrophil-specific deletion of HIF-1α (HIF-1αΔNφ) significantly reduced tumor burden and improved overall survival in orthotopic transplanted mice, by converting the pro-tumorigenic neutrophil phenotype to an anti-tumorigenic phenotype. This outcome was associated with elevated reactive oxygen species production and activated natural killer cells and CD8+ cytotoxic T cells compared to littermate control mice. These data suggest a role for HIF-1α in neutrophil metabolism, which could be exploited as a target for metabolic modulation in cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neutrófilos/metabolismo , Linhagem Celular Tumoral , Camundongos Knockout , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Carcinogênese , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Microambiente Tumoral/genética , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198548

RESUMO

Inflammation in the tumor microenvironment has been shown to promote disease progression in pancreatic ductal adenocarcinoma (PDAC); however, the role of macrophage metabolism in promoting inflammation is unclear. Using an orthotopic mouse model of PDAC, we demonstrate that macrophages from tumor-bearing mice exhibit elevated glycolysis. Macrophage-specific deletion of Glucose Transporter 1 (GLUT1) significantly reduced tumor burden, which was accompanied by increased Natural Killer and CD8+ T cell activity and suppression of the NLRP3-IL1ß inflammasome axis. Administration of mice with a GLUT1-specific inhibitor reduced tumor burden, comparable with gemcitabine, the current standard-of-care. In addition, we observe that intra-tumoral macrophages from human PDAC patients exhibit a pronounced glycolytic signature, which reliably predicts poor survival. Our data support a key role for macrophage metabolism in tumor immunity, which could be exploited to improve patient outcomes.


Assuntos
Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Citoproteção , Glicólise , Macrófagos/metabolismo , Neoplasias Pancreáticas/patologia , Adenocarcinoma/imunologia , Animais , Carcinoma Ductal Pancreático/imunologia , Proliferação de Células/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Hidroxibenzoatos/farmacologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias Pancreáticas/imunologia , Análise de Sobrevida , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Carga Tumoral/efeitos dos fármacos , Neoplasias Pancreáticas
5.
Immunity ; 48(2): 364-379.e8, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466759

RESUMO

Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.


Assuntos
Células da Medula Óssea/fisiologia , Neutrófilos/fisiologia , Animais , Células da Medula Óssea/imunologia , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Linhagem da Célula , Movimento Celular , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Camundongos , Neoplasias Experimentais/imunologia , Neutrófilos/imunologia
6.
Cancer Immunol Res ; 4(11): 917-926, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638841

RESUMO

Chronic intestinal inflammation accompanies familial adenomatous polyposis (FAP) and is a major risk factor for colorectal cancer in patients with this disease, but the cause of such inflammation is unknown. Because retinoic acid (RA) plays a critical role in maintaining immune homeostasis in the intestine, we hypothesized that altered RA metabolism contributes to inflammation and tumorigenesis in FAP. To assess this hypothesis, we analyzed RA metabolism in the intestines of patients with FAP as well as APCMin/+ mice, a model that recapitulates FAP in most respects. We also investigated the impact of intestinal RA repletion and depletion on tumorigenesis and inflammation in APCMin/+ mice. Tumors from both FAP patients and APCMin/+ mice displayed striking alterations in RA metabolism that resulted in reduced intestinal RA. APCMin/+ mice placed on a vitamin A-deficient diet exhibited further reductions in intestinal RA with concomitant increases in inflammation and tumor burden. Conversely, restoration of RA by pharmacologic blockade of the RA-catabolizing enzyme CYP26A1 attenuated inflammation and diminished tumor burden. To investigate the effect of RA deficiency on the gut immune system, we studied lamina propria dendritic cells (LPDC) because these cells play a central role in promoting tolerance. APCMin/+ LPDCs preferentially induced Th17 cells, but reverted to inducing Tregs following restoration of intestinal RA in vivo or direct treatment of LPDCs with RA in vitro These findings demonstrate the importance of intestinal RA deficiency in tumorigenesis and suggest that pharmacologic repletion of RA could reduce tumorigenesis in FAP patients. Cancer Immunol Res; 4(11); 917-26. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Enterocolite/genética , Genes APC , Tretinoína/farmacologia , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Polipose Adenomatosa do Colo/complicações , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Animais , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Enterocolite/tratamento farmacológico , Enterocolite/metabolismo , Enterocolite/patologia , Humanos , Camundongos , Fenótipo , Células Th17/imunologia , Células Th17/metabolismo , Tretinoína/metabolismo , Carga Tumoral , Vitamina A/metabolismo , Deficiência de Vitamina A/metabolismo
7.
Oncoimmunology ; 5(8): e1191731, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27622062

RESUMO

Patients with pancreatic ductal adenocarcinoma (PDAC) face a clinically intractable disease with poor survival rates, attributed to exceptionally high levels of metastasis. Epithelial-to-mesenchymal transition (EMT) is pronounced at inflammatory foci within the tumor; however, the immunological mechanisms promoting tumor dissemination remain unclear. It is well established that tumors exhibit the Warburg effect, a preferential use of glycolysis for energy production, even in the presence of oxygen, to support rapid growth. We hypothesized that the metabolic pathways utilized by tumor-infiltrating macrophages are altered in PDAC, conferring a pro-metastatic phenotype. We generated tumor-conditioned macrophages in vitro, in which human peripheral blood monocytes were cultured with conditioned media generated from normal pancreatic or PDAC cell lines to obtain steady-state and tumor-associated macrophages (TAMs), respectively. Compared with steady-state macrophages, TAMs promoted vascular network formation, augmented extravasation of tumor cells out of blood vessels, and induced higher levels of EMT. TAMs exhibited a pronounced glycolytic signature in a metabolic flux assay, corresponding with elevated glycolytic gene transcript levels. Inhibiting glycolysis in TAMs with a competitive inhibitor to Hexokinase II (HK2), 2-deoxyglucose (2DG), was sufficient to disrupt this pro-metastatic phenotype, reversing the observed increases in TAM-supported angiogenesis, extravasation, and EMT. Our results indicate a key role for metabolic reprogramming of tumor-infiltrating macrophages in PDAC metastasis, and highlight the therapeutic potential of using pharmacologics to modulate these metabolic pathways.

8.
Immunity ; 45(3): 641-655, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27590114

RESUMO

Although all-trans-retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA. Inhibition of atRA signaling promoted tumorigenesis, whereas atRA supplementation reduced tumor burden. The benefit of atRA treatment was mediated by cytotoxic CD8(+) T cells, which were activated due to MHCI upregulation on tumor cells. Consistent with these findings, increased colonic expression of the atRA-catabolizing enzyme, CYP26A1, correlated with reduced frequencies of tumoral cytotoxic CD8(+) T cells and with worse disease prognosis in human CRC. These results reveal a mechanism by which microbiota drive colon carcinogenesis and highlight atRA metabolism as a therapeutic target for CRC.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Microbiota/imunologia , Tretinoína/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/imunologia , Colo/imunologia , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ácido Retinoico 4 Hidroxilase/metabolismo , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
9.
Oncotarget ; 6(29): 27832-46, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26337837

RESUMO

Most cancer immunotherapies under present investigation are based on the belief that cytotoxic T cells are the most important anti-tumoral immune cells, whereas intra-tumoral macrophages would rather play a pro-tumoral role. We have challenged this antagonistic point of view and searched for collaborative contributions by tumor-infiltrating T cells and macrophages, reminiscent of those observed in anti-infectious responses. We demonstrate that, in a model of therapeutic vaccination, cooperation between myeloid cells and T cells is indeed required for tumor rejection. Vaccination elicited an early rise of CD11b+ myeloid cells that preceded and conditioned the intra-tumoral accumulation of CD8+ T cells. Conversely, CD8+ T cells and IFNγ production activated myeloid cells were required for tumor regression. A 4-fold reduction of CD8+ T cell infiltrate in CXCR3KO mice did not prevent tumor regression, whereas a reduction of tumor-infiltrating myeloid cells significantly interfered with vaccine efficiency. We show that macrophages from regressing tumors can kill tumor cells in two ways: phagocytosis and TNFα release. Altogether, our data suggest new strategies to improve the efficiency of cancer immunotherapies, by promoting intra-tumoral cooperation between macrophages and T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/imunologia , Neoplasias Experimentais/imunologia , Animais , Comunicação Celular/imunologia , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA