Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(18): 186202, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977630

RESUMO

Visualization of individual electronic states ascribed to specific unoccupied orbitals at the atomic scale can reveal fundamental information about chemical bonding, but it is challenging since bonding often results in only subtle variations in the whole density of states. Here, we utilize atomic-resolution energy-loss near-edge fine structure (ELNES) spectroscopy to map out the electronic states attributed to specific unoccupied p_{z} orbital around a fourfold coordinated silicon point defect in graphene, which is further supported by theoretical calculations. Our results illustrate the power of atomic-resolution ELNES towards the probing of defect-site-specific electronic orbitals in monolayer crystals, providing insights into understanding the effect of chemical bonding on the local properties of defects in solids.

2.
Sci Adv ; 9(42): eadj0904, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37851810

RESUMO

A continuing challenge in atomic resolution microscopy is to identify significant structural motifs and their assembly rules in synthesized materials with limited observations. Here, we propose and validate a simple and effective hybrid generative model capable of predicting unseen domain boundaries in a potassium sodium niobate thin film from only a small number of observations, without expensive first-principles calculations or atomistic simulations of domain growth. Our results demonstrate that complicated domain boundary structures spanning 1 to 100 nanometers can arise from simple interpretable local rules played out probabilistically. We also found previously unobserved, significant, tileable boundary motifs that may affect the piezoelectric response of the material system, and evidence that our system creates domain boundaries with the highest configurational entropy. More broadly, our work shows that simple yet interpretable machine learning models could pave the way to describe and understand the nature and origin of disorder in complex materials, therefore improving functional materials design.

3.
Innovation (Camb) ; 4(6): 100502, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37701921

RESUMO

Twin boundaries (TBs) in transition metal dichalcogenides (TMDs) constitute distinctive one-dimensional electronic systems, exhibiting intriguing physical and chemical properties that have garnered significant attention in the fields of quantum physics and electrocatalysis. However, the controlled manipulation of TBs in terms of density and specific atomic configurations remains a formidable challenge. In this study, we present a non-epitaxial growth approach that enables the controlled and large-scale fabrication of homogeneous catalytically active TBs in monolayer TMDs on arbitrary substrates. Notably, the density achieved using this strategy is six times higher than that observed in convention chemical vapor deposition (CVD)-grown samples. Through rigorous experimental analysis and multigrain Wulff construction simulations, we elucidate the role of regulating the metal source diffusion process, which serves as the key factor for inducing the self-oriented growth of TMD grains and the formation of unified TBs. Furthermore, we demonstrate that this novel growth mode can be readily incorporated into the conventional CVD growth method by making a simple modification of the growth temperature profile, thereby offering a universal approach for engineering of grain boundaries in two-dimensional materials.

6.
Nature ; 615(7950): 56-61, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859579

RESUMO

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

7.
Nat Mater ; 22(5): 612-618, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36928385

RESUMO

Correlation of lattice vibrational properties with local atomic configurations in materials is essential for elucidating functionalities that involve phonon transport in solids. Recent developments in vibrational spectroscopy in a scanning transmission electron microscope have enabled direct measurements of local phonon modes at defects and interfaces by combining high spatial and energy resolution. However, pushing the ultimate limit of vibrational spectroscopy in a scanning transmission electron microscope to reveal the impact of chemical bonding on local phonon modes requires extreme sensitivity of the experiment at the chemical-bond level. Here we demonstrate that, with improved instrument stability and sensitivity, the specific vibrational signals of the same substitutional impurity and the neighbouring carbon atoms in monolayer graphene with different chemical-bonding configurations are clearly resolved, complementary with density functional theory calculations. The present work opens the door to the direct observation of local phonon modes with chemical-bonding sensitivity, and provides more insights into the defect-induced physics in graphene.

8.
Nature ; 613(7942): 53-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600061

RESUMO

Interlayer electronic coupling in two-dimensional materials enables tunable and emergent properties by stacking engineering. However, it also results in significant evolution of electronic structures and attenuation of excitonic effects in two-dimensional semiconductors as exemplified by quickly degrading excitonic photoluminescence and optical nonlinearities in transition metal dichalcogenides when monolayers are stacked into van der Waals structures. Here we report a van der Waals crystal, niobium oxide dichloride (NbOCl2), featuring vanishing interlayer electronic coupling and monolayer-like excitonic behaviour in the bulk form, along with a scalable second-harmonic generation intensity of up to three orders higher than that in monolayer WS2. Notably, the strong second-order nonlinearity enables correlated parametric photon pair generation, through a spontaneous parametric down-conversion (SPDC) process, in flakes as thin as about 46 nm. To our knowledge, this is the first SPDC source unambiguously demonstrated in two-dimensional layered materials, and the thinnest SPDC source ever reported. Our work opens an avenue towards developing van der Waals material-based ultracompact on-chip SPDC sources as well as high-performance photon modulators in both classical and quantum optical technologies1-4.

9.
Small ; 19(12): e2203201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36593529

RESUMO

Nanocomposite films hold great promise for multifunctional devices by integrating different functionalities within a single film. The microstructure of the precipitate/secondary phase is an essential element in designing composites' properties. The interphase strain between the matrix and secondary phase is responsible for strain-mediated functionalities, such as magnetoelectric coupling and ferroelectricity. However, a quantitative microstructure-dependent interphase strain characterization has been scarcely studied. Here, it is demonstrated that the PbTiO3 (PTO)/PbO composite system can be prepared in nano-spherical and nanocolumnar configurations by tuning the misfit strain, confirmed by a three-dimensional reconstructive microscopy technique. With the atomic resolution quantitative microscopy with a depth resolution of a few nanometers, it is discovered that the strained region in PTO is much larger and more uniform in nanocolumnar compared to nano-spherical composites, resulting in much enhanced ferroelectric properties. The interphase strain between PbO and PTO in the nanocolumnar structure leads to a giant c/a ratio of 1.20 (bulk value of 1.06), accompanied by a Ti polarization displacement of 0.48 Å and an effective ferroelectric polarization of 241.7 µC cm-2 , three times compared to the bulk value. The quantitative atomic-scale strain and polarization analysis on the interphase strain provides an important guideline for designing ferroelectric nanocomposites.

10.
ACS Nano ; 17(3): 2450-2459, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36716185

RESUMO

Self-intercalation of native magnetic atoms within the van der Waals (vdW) gap of layered two-dimensional (2D) materials provides a degree of freedom to manipulate magnetism in low-dimensional systems. Among various vdW magnets, the vanadium telluride is an interesting system to explore the interlayer order-disorder transition of magnetic impurities due to its flexibility in taking nonstoichiometric compositions. In this work, we combine high-resolution scanning transmission electron microscopy (STEM) analysis with density functional theory (DFT) calculations and magnetometry measurements, to unveil the local atomic structure and magnetic behavior of V-rich V1+xTe2 nanoplates with embedded V3Te4 nanoclusters grown by chemical vapor deposition (CVD). The segregation of V intercalations locally stabilizes the self-intercalated V3Te4 magnetic phase, which possesses a distorted 1T'-like monoclinic structure. This phase transition is controlled by the electron doping from the intercalant V ions. The magnetic hysteresis loops show that the nanoplates exhibit superparamagnetism, while the temperature-dependent magnetization curves evidence a collective superspin-glass magnetic behavior of the nanoclusters at low temperature. Using four-dimensional (4D) STEM diffraction imaging, we reveal the formation of collective diffuse magnetic domain structures within the sample under the high magnetic fields inside the electron microscope. Our results shed light on the studies of dilute magnetism at the 2D limit and on strategies for the manipulation of magnetism for spintronic applications.

11.
Sci Bull (Beijing) ; 67(21): 2176-2185, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36545993

RESUMO

The vanadium-based kagome superconductor CsV3Sb5 has attracted tremendous attention due to its unexcepted anomalous Hall effect (AHE), charge density waves (CDWs), nematicity, and a pseudogap pair density wave (PDW) coexisting with unconventional strong-coupling superconductivity. The origins of CDWs, unconventional superconductivity, and their correlation with different electronic states in this kagome system are of great significance, but so far, are still under debate. Chemical doping in the kagome layer provides one of the most direct ways to reveal the intrinsic physics, but remains unexplored. Here, we report, for the first time, the synthesis of Ti-substituted CsV3Sb5 single crystals and its rich phase diagram mapping the evolution of intertwining electronic states. The Ti atoms directly substitute for V in the kagome layers. CsV3-xTixSb5 shows two distinct superconductivity phases upon substitution. The Ti slightly-substituted phase displays an unconventional V-shaped superconductivity gap, coexisting with weakening CDW, PDW, AHE, and nematicity. The Ti highly-substituted phase has a U-shaped superconductivity gap concomitant with a short-range rotation symmetry breaking CDW, while long-range CDW, twofold symmetry of in-plane resistivity, AHE, and PDW are absent. Furthermore, we also demonstrate the chemical substitution of V atoms with other elements such as Cr and Nb, showing a different modulation on the superconductivity phases and CDWs. These findings open up a way to synthesise a new family of doped CsV3Sb5 materials, and further represent a new platform for tuning the different correlated electronic states and superconducting pairing in kagome superconductors.

12.
Sci Adv ; 8(45): eadd7690, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367928

RESUMO

Ordered germanium vacancies in germanium telluride thermoelectric material are called van der Waals (vdW) gaps, and they are beneficial for the thermoelectric performance of the material. The vdW gaps have been observed by atomic resolution scanning transmission electron microscopy, but their origin remains unclear, which prevents their extensive application in other materials systems. Here, we report that the occurrence of vdW gaps in germanium telluride is mainly driven by strain from the cubic-to-rhombohedral martensitic transition. Direct strain and structural evidence are given here by in situ nanobeam diffraction and in situ transmission electron microscopy observation. Dislocation theory is used to discuss the origin of vdW gaps. Our work here paves the way for self-assembling two-dimensional ordered vacancies, which establishes a previously unidentified degree of freedom to adjust their electronic and thermal properties.

13.
ACS Appl Mater Interfaces ; 14(43): 48995-49002, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36274221

RESUMO

Designing the next generation of high-resolution displays requires high pixel density per area and small pixel sizes without compromising the optical quality. Quantum dots (QDs) have been demonstrated as a promising material system for down-conversion of blue emission as they provide pure colors on the wide color gamut. However, for high color-conversion efficiency, the required QD film thickness has not been compatible with small pixel sizes. In this work, we develop a new type of freestanding QD-based color converter for efficient optical down-conversion from inorganic blue light-emitting diodes (LEDs) in a color-by-blue configuration. CdSe/ZnS core-shell QDs in a UV-curable polymer matrix are encapsulated within cavities formed by patterning and bonding a pair of patterned quartz substrates. By controlling the required QD thickness and the pixel size independently, we demonstrate freestanding monochrome red and green converters with small pixel sizes down to 5 × 5 µm2 and a high resolution of >3600 ppi. The optical studies show that the QD film thickness required for efficient color conversion can be successfully realized even for the small pixel sizes. We further combine green and red pixels in a single converter to achieve white emission when combined with blue LED emission. The QD color converter design and processing are decoupled from the LED fabrication and can be easily scaled to wafer-size integration with arbitrary pixel sizes for QD-based RGB displays with ultrahigh resolution.

14.
Nat Commun ; 13(1): 5612, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153314

RESUMO

Thermoelectrics enable direct heat-to-electricity transformation, but their performance has so far been restricted by the closely coupled carrier and phonon transport. Here, we demonstrate that the quantum gaps, a class of planar defects characterized by nano-sized potential wells, can decouple carrier and phonon transport by selectively scattering phonons while allowing carriers to pass effectively. We choose the van der Waals gap in GeTe-based materials as a representative example of the quantum gap to illustrate the decoupling mechanism. The nano-sized potential well of the quantum gap in GeTe-based materials is directly visualized by in situ electron holography. Moreover, a more diffused distribution of quantum gaps results in further reduction of lattice thermal conductivity, which leads to a peak ZT of 2.6 at 673 K and an average ZT of 1.6 (323-723 K) in a GeTe system. The quantum gap can also be engineered into other thermoelectrics, which provides a general method for boosting their thermoelectric performance.

15.
Nat Commun ; 13(1): 3922, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798745

RESUMO

A large electromechanical response in ferroelectrics is highly desirable for developing high-performance sensors and actuators. Enhanced electromechanical coupling in ferroelectrics is usually obtained at morphotropic phase boundaries requiring stoichiometric control of complex compositions. Recently it was shown that giant piezoelectricity can be obtained in films with nanopillar structures. Here, we elucidate its origin in terms of atomic structure and demonstrate a different system with a greatly enhanced response. This is in non-stoichiometric potassium sodium niobate epitaxial thin films with a high density of self-assembled planar faults. A giant piezoelectric coefficient of ∼1900 picometer per volt is demonstrated at 1 kHz, which is almost double the highest ever reported effective piezoelectric response in any existing thin films. The large oxygen octahedral distortions and the coupling between the structural distortion and polarization orientation mediated by charge redistribution at the planar faults enable the giant electric-field-induced strain. Our findings demonstrate an important mechanism for realizing the unprecedentedly giant electromechanical coupling and can be extended to many other material functions by engineering lattice faults in non-stoichiometric compositions.

16.
Adv Sci (Weinh) ; 9(28): e2105192, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35730766

RESUMO

Combining isolated atomic active sites with those in nanoparticles for synergizing complex multistep catalysis is being actively pursued in the design of new electrocatalyst systems. However, these novel systems have been rarely studied due to the challenges with synthesis and analysis. Herein, a synergistically catalytic performance is demonstrated with a 0.89 V (vs reversible hydrogen electrode) onset potential in the four-step oxygen reduction reaction (ORR) by localizing tungsten single atoms around tungsten nitride nanoparticles confined into nitrogen-doped carbon (W SAs/WNNC). Through density functional theory calculations, it is shown that each of the active centers in the synergistic entity feature a specific potential-determining step in their respective reaction pathway that can be merged to optimize the intermediate steps involving scaling relations on individual active centers. Impressively, the W SAs/WNNC as the air cathode in all-solid-state Zn-air and Al-air batteries demonstrate competitive durability and reversibility, despite the acknowledged low activity of W-based catalyst toward the ORR.

17.
Nature ; 606(7916): 890-895, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676489

RESUMO

Majorana zero modes (MZMs) obey non-Abelian statistics and are considered building blocks for constructing topological qubits1,2. Iron-based superconductors with topological bandstructures have emerged as promising hosting materials, because isolated candidate MZMs in the quantum limit have been observed inside the topological vortex cores3-9. However, these materials suffer from issues related to alloying induced disorder, uncontrolled vortex lattices10-13 and a low yield of topological vortices5-8. Here we report the formation of an ordered and tunable MZM lattice in naturally strained stoichiometric LiFeAs by scanning tunnelling microscopy/spectroscopy. We observe biaxial charge density wave (CDW) stripes along the Fe-Fe and As-As directions in the strained regions. The vortices are pinned on the CDW stripes in the As-As direction and form an ordered lattice. We detect that more than 90 per cent of the vortices are topological and possess the characteristics of isolated MZMs at the vortex centre, forming an ordered MZM lattice with the density and the geometry tunable by an external magnetic field. Notably, with decreasing the spacing of neighbouring vortices, the MZMs start to couple with each other. Our findings provide a pathway towards tunable and ordered MZM lattices as a platform for future topological quantum computation.

19.
Sci Adv ; 8(15): eabk1005, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417228

RESUMO

Characterizing materials to atomic resolution and first-principles structure-property prediction are two pillars for accelerating functional materials discovery. However, we are still lacking a rapid, noise-robust framework to extract multilevel atomic structural motifs from complex materials to complement, inform, and guide our first-principles models. Here, we present a machine learning framework that rapidly extracts a hierarchy of complex structural motifs from atomically resolved images. We demonstrate how such motif hierarchies can rapidly reconstruct specimens with various defects. Abstracting complex specimens with simplified motifs enabled us to discover a previously unidentified structure in a Mo─V─Te─Nb polyoxometalate (POM) and quantify the relative disorder in a twisted bilayer MoS2. In addition, these motif hierarchies provide statistically grounded clues about the favored and frustrated pathways during self-assembly. The motifs and their hierarchies in our framework coarse-grain disorder in a manner that allows us to understand a much broader range of multiscale samples with functional imperfections and nontrivial topological phases.

20.
Microsc Microanal ; : 1-11, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260221

RESUMO

Accurate geometrical calibration between the scan coordinates and the camera coordinates is critical in four-dimensional scanning transmission electron microscopy (4D-STEM) for both quantitative imaging and ptychographic reconstructions. For atomic-resolved, in-focus 4D-STEM datasets, we propose a hybrid method incorporating two sub-routines, namely a J-matrix method and a Fourier method, which can calibrate the uniform affine transformation between the scan-camera coordinates using raw data, without a priori knowledge of the crystal structure of the specimen. The hybrid method is found robust against scan distortions and residual probe aberrations. It is also effective even when defects are present in the specimen, or the specimen becomes relatively thick. We will demonstrate that a successful geometrical calibration with the hybrid method will lead to a more reliable recovery of both the specimen and the electron probe in a ptychographic reconstruction. We will also show that, although the elimination of local scan position errors still requires an iterative approach, the rate of convergence can be improved, and the residual errors can be further reduced if the hybrid method can be firstly applied for initial calibration. The code is made available as a simple-to-use tool to correct affine transformations of the scan-camera coordinates in 4D-STEM experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA