Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Antibiot (Tokyo) ; 77(4): 245-256, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38238588

RESUMO

Tunicamycins (TUN) are well-defined, Streptomyces-derived natural products that inhibit protein N-glycosylation in eukaryotes, and by a conserved mechanism also block bacterial cell wall biosynthesis. TUN inhibits the polyprenylphosphate-N-acetyl-hexosamine-1-phospho-transferases (PNPT), an essential family of enzymes found in both bacteria and eukaryotes. We have previously published the development of chemically modified TUN, called TunR1 and TunR2, that have considerably reduced activity on eukaryotes but that retain the potent antibacterial properties. A mechanism for this reduced toxicity has also been reported. TunR1 and TunR2 have been tested against mammalian cell lines in culture and against live insect cells but, until now, no in vivo evaluation has been undertaken for vertebrates. In the current work, TUN, TunR1, and TunR2 are investigated for their relative toxicity and antimycobacterial activity in zebrafish using a well-established Mycobacterium marinum (M. marinum) infection system, a model for studying human Mycobacterium tuberculosis infections. We also report the relative ability to activate the unfolded protein response (UPR), the known mechanism for the eukaryotic toxicity observed with TUN treatment. Importantly, TunR1 and TunR2 retained their antimicrobial properties, as evidenced by a reduction in M. marinum bacterial burden, compared to DMSO-treated zebrafish. In summary, findings from this study highlight the characteristics of recently developed TUN derivatives, mainly TunR2, and its potential for use as a novel anti-bacterial agent for veterinary and potential medical purposes.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium marinum , Tunicamicina , Animais , Humanos , Antibacterianos/farmacologia , Mamíferos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/fisiologia , Tunicamicina/química , Tunicamicina/análogos & derivados , Peixe-Zebra/microbiologia , Fosfotransferases/química
2.
Infect Immun ; 80(9): 3018-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22689819

RESUMO

Mycobacterium tuberculosis remains a significant global pathogen, causing extensive morbidity and mortality worldwide. This bacterium persists within granulomatous lesions in a poorly characterized, nonreplicating state. The two-component signal transduction systems MprAB and DosRS-DosT (DevRS-Rv2027c) are responsive to conditions likely to be present within granulomatous lesions and mediate aspects of M. tuberculosis persistence in vitro and in vivo. Here, we describe a previously uncharacterized locus, Rv1813c-Rv1812c, that is coregulated by both MprA and DosR. We demonstrate that MprA and DosR bind to adjacent and overlapping sequences within the promoter region of Rv1813c and direct transcription from an initiation site located several hundred base pairs upstream of the Rv1813 translation start site. We further show that Rv1813c and Rv1812c are cotranscribed, and that the genomic organization of this operon is specific to M. tuberculosis and Mycobacterium bovis. Although Rv1813c is not required for survival of M. tuberculosis in vitro, including under conditions in which MprAB and DosRST signaling are activated, an M. tuberculosis ΔRv1813c mutant is attenuated in the low-dose aerosol model of murine tuberculosis, where it exhibits a lower bacterial burden, delayed time to death, and decreased ability to stimulate proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-12. Interestingly, overcomplementation of these phenotypes is observed in the M. tuberculosis ΔRv1813c mutant expressing both Rv1813c and Rv1812c, but not Rv1813c alone, in trans. Therefore, Rv1813c and Rv1812c may represent general stress-responsive elements that are necessary for aspects of M. tuberculosis virulence and the host immune response to infection.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Óperon , Proteínas Quinases/metabolismo , Fatores de Virulência/biossíntese , Animais , Carga Bacteriana , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Feminino , Deleção de Genes , Ordem dos Genes , Teste de Complementação Genética , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/genética , Regiões Promotoras Genéticas , Ligação Proteica , Análise de Sobrevida , Sintenia , Sítio de Iniciação de Transcrição , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
3.
J Bacteriol ; 193(19): 5105-18, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821774

RESUMO

Mycobacterium tuberculosis, the etiological agent of tuberculosis, remains a significant cause of morbidity and mortality throughout the world despite a vaccine and cost-effective antibiotics. The success of this organism can be attributed, in part, to its ability to adapt to potentially harmful stress within the host and establish, maintain, and reactivate from long-term persistent infection within granulomatous structures. The DosRS-DosT/DevRS-Rv2027c, and MprAB two-component signal transduction systems have previously been implicated in aspects of persistent infection by M. tuberculosis and are known to be responsive to conditions likely to be found within the granuloma. Here, we describe initial characterization of a locus (Rv0081-Rv0088) encoding components of a predicted formate hydrogenylase enzyme complex that is directly regulated by DosR/DevR and MprA, and the product of the first gene in this operon, Rv0081. In particular, we demonstrate that Rv0081 negatively regulates its own expression and that of downstream genes by binding an inverted repeat element in its upstream region. In contrast, DosR/DevR and MprA positively regulate Rv0081 expression by binding to recognition sequences that either partially or completely overlap that recognized by Rv0081, respectively. Expression of Rv0081 initiates from two promoter elements; one promoter located downstream of the DosR/DevR binding site but overlapping the sequence recognized by both Rv0081 and MprA and another promoter downstream of the DosR/DevR, Rv0081, and MprA binding sites. Interestingly, Rv0081 represses Rv0081 and downstream determinants following activation of DosRS-DosT/DevRS-Rv2027c by nitric oxide, suggesting that expression of this locus is complex and subject to multiple levels of regulation. Based on this and other published information, a model is proposed detailing Rv0081-Rv0088 expression by these transcription factors within particular growth environments.


Assuntos
Proteínas de Bactérias/metabolismo , Formiato Desidrogenases/metabolismo , Complexos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/metabolismo , Protamina Quinase/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA , Ensaio de Desvio de Mobilidade Eletroforética , Formiato Desidrogenases/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Complexos Multienzimáticos/genética , Mutação , Mycobacterium tuberculosis/genética , Protamina Quinase/genética , Proteínas Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
PLoS One ; 6(3): e18175, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21445360

RESUMO

Mycobacterium tuberculosis remains a significant global health concern largely due to its ability to persist for extended periods within the granuloma of the host. While residing within the granuloma, the tubercle bacilli are likely to be exposed to stress that can result in formation of aberrant proteins with altered structures. Bacteria encode stress responsive determinants such as proteases and chaperones to deal with misfolded or unfolded proteins. pepD encodes an HtrA-like serine protease and is thought to process proteins altered following exposure of M. tuberculosis to extra-cytoplasmic stress. PepD functions both as a protease and chaperone in vitro, and is required for aspects of M. tuberculosis virulence in vivo. pepD is directly regulated by the stress-responsive two-component signal transduction system MprAB and indirectly by extracytoplasmic function (ECF) sigma factor SigE. Loss of PepD also impacts expression of other stress-responsive determinants in M. tuberculosis. To further understand the role of PepD in stress adaptation by M. tuberculosis, a proteomics approach was taken to identify binding proteins and possible substrates of this protein. Using subcellular fractionation, the cellular localization of wild-type and PepD variants was determined. Purified fractions as well as whole cell lysates from Mycobacterium smegmatis or M. tuberculosis strains expressing a catalytically compromised PepD variant were immunoprecipitated for PepD and subjected to LC-MS/MS analyses. Using this strategy, the 35-kDa antigen encoding a homolog of the PspA phage shock protein was identified as a predominant binding partner and substrate of PepD. We postulate that proteolytic cleavage of the 35-kDa antigen by PepD helps maintain cell wall homeostasis in Mycobacterium and regulates specific stress response pathways during periods of extracytoplasmic stress.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Mycobacterium tuberculosis/enzimologia , Serina Proteases/metabolismo , Cromatografia Líquida , Epitopos/imunologia , Imunoprecipitação , Mycobacterium tuberculosis/imunologia , Especificidade por Substrato , Espectrometria de Massas em Tandem , Técnicas do Sistema de Duplo-Híbrido
5.
J Bacteriol ; 192(6): 1498-510, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20061478

RESUMO

Currently, one-third of the world's population is believed to be latently infected with Mycobacterium tuberculosis. The mechanisms by which M. tuberculosis establishes latent infection remain largely undefined. mprAB encodes a two-component signal transduction system required by M. tuberculosis for aspects of persistent infection. MprAB regulates a large and diverse group of genetic determinants in response to membrane stress, including the extracytoplasmic function (ECF) sigma factor sigE and the HtrA-like serine protease pepD. Recent studies have demonstrated that PepD functions as both a protease and chaperone in vitro. In addition, inactivation of pepD alters the virulence of M. tuberculosis in a mouse model system of infection. Here, we demonstrate that PepD plays an important role in the stress response network of Mycobacterium mediated through MprAB and SigE. In particular, we demonstrate that the protease activity of PepD requires the PDZ domain, in addition to the catalytic serine at position 317. pepD expression initiates from at least three promoters in M. tuberculosis, including one that is regulated by SigE and is located upstream of the mprA coding sequence. Deletion of pepD or mprAB in Mycobacterium smegmatis and M. tuberculosis alters the stress response phenotypes of these strains, including increasing sensitivity to SDS and cell wall antibiotics and upregulating the expression of stress-responsive determinants, including sigE. Taking these data together, we hypothesize that PepD utilizes its PDZ domain to recognize and process misfolded proteins at the cell membrane, leading to activation of the MprAB and SigE signaling pathways and subsequent establishment of a positive feedback loop that facilitates bacterial adaptation.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Mycobacterium tuberculosis/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Animais , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Transcrição Gênica
6.
PLoS One ; 3(6): e2487, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-18575611

RESUMO

BACKGROUND: Francisella tularensis is a gram-negative coccobacillus that causes the febrile illness tularemia. Subspecies that are pathogenic for humans include those comprising the type A (subspecies tularensis) or type B (subspecies holarctica) biovars. An attenuated live vaccine strain (LVS) developed from a type B isolate has previously been used to vaccinate at-risk individuals, but offers limited protection against high dose (>1000 CFUs) challenge with type A strains delivered by the respiratory route. Due to differences between type A and type B F. tularensis strains at the genetic level, it has been speculated that utilization of an attenuated type A strain as a live vaccine might offer better protection against homologous respiratory challenge compared with LVS. Here, we report the construction and characterization of an unmarked Delta purMCD mutant in the highly virulent type A strain Schu S4. METHODOLOGY/PRINCIPAL FINDINGS: Growth of Schu S4 Delta purMCD was severely attenuated in primary human peripheral blood monocyte-derived macrophages and in the A549 human lung epithelial cell line. The Schu S4 Delta purMCD mutant was also highly attenuated in mice when delivered via either the intranasal or intradermal infection route. Mice vaccinated intranasally with Schu S4 Delta purMCD were well protected against high dose intradermal challenge with virulent type A or type B strains of F. tularensis. However, intranasal vaccination with Schu S4 Delta purMCD induced tissue damage in the lungs, and conferred only limited protection against high dose Schu S4 challenge delivered by the same route. The level of protection observed was similar to that conferred following vaccination with wild-type LVS or the analogous LVS Delta purMCD mutant. CONCLUSIONS/SIGNIFICANCE: Collectively, these results argue that development of the next generation live attenuated vaccine for Francisella should be based on use of the less pathogenic type B biovar rather than the more reactogenic type A biovar.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Purinas/imunologia , Administração Intranasal , Animais , Vacinas Bacterianas/administração & dosagem , Linhagem Celular , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Humanos , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Mutação , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA