Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(35): 10493-7, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27440434

RESUMO

Ten new efficient p-dopants for conductivity doping of organic semiconductors for OLEDs are identified. The key advantage of the electrophilic tris(carboxylato) bismuth(III) compounds is the unique low absorption of the resulting doped layers which promotes the efficiency of OLED devices. The combination of these features with their low fabrication cost, volatility, and stability, make these materials very attractive as dopants in organic electronics.

2.
Front Chem ; 2: 51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25077143

RESUMO

The empirical model explaining microsolvation of molecules in superfluid helium droplets proposes a non-superfluid helium solvation layer enclosing the dopant molecule. This model warrants an empirical explanation of any helium induced substructure resolved for electronic transitions of molecules in helium droplets. Despite a wealth of such experimental data, quantitative modeling of spectra is still in its infancy. The theoretical treatment of such many-particle systems dissolved into a quantum fluid is a challenge. Moreover, the success of theoretical activities relies also on the accuracy and self-critical communication of experimental data. This will be elucidated by a critical resume of our own experimental work done within the last ten years. We come to the conclusion that spectroscopic data and among others in particular the spectral resolution depend strongly on experimental conditions. Moreover, despite the fact that none of the helium induced fine structure speaks against the empirical model for solvation in helium droplets, in many cases an unequivocal assignment of the spectroscopic details is not possible. This ambiguity needs to be considered and a careful and critical communication of experimental results is essential in order to promote success in quantitatively understanding microsolvation in superfluid helium nanodroplets.

3.
J Chem Phys ; 139(23): 234313, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359373

RESUMO

The mixed-field orientation of an asymmetric-rotor molecule with its permanent dipole moment nonparallel to the principal axes of polarizability is investigated experimentally and theoretically. We find that for the typical case of a strong, nonresonant laser field and a weak static electric field complete 3D orientation is induced if the laser field is elliptically polarized and if its major and minor polarization axes are not parallel to the static field. For a linearly polarized laser field solely the dipole moment component along the most polarizable axis of the molecule is relevant resulting in 1D orientation even when the laser polarization and the static field are nonparallel. Simulations show that the dipole moment component perpendicular to the most-polarizable axis becomes relevant in a strong dc electric field combined with the laser field. This offers an alternative approach to 3D orientation by combining a linearly polarized laser field and a strong dc electric field arranged at an angle equal to the angle between the most polarizable axis of the molecule and its permanent dipole moment.

4.
Phys Rev Lett ; 110(9): 093002, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496707

RESUMO

We show that a 450 fs nonresonant, moderately intense, linearly polarized laser pulse can induce field-free molecular axis alignment of methyliodide (CH(3)I) molecules dissolved in a helium nanodroplet. Time-resolved measurements reveal rotational dynamics much slower than that of isolated molecules and absence of the sharp transient alignment recurrences characteristic of gas phase molecules. Our results presage a range of new opportunities for exploring both molecular dynamics in a dissipative environment and the properties of He nanodroplets.

5.
Chemphyschem ; 12(10): 1969-80, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21438110

RESUMO

We present the fluorescence excitation and dispersed emission spectra of the parent compound of the boron dipyrromethene (BODIPY) dye class measured in a supersonic beam and isolated in superfluid helium nanodroplets. The gas-phase spectrum of the isolated molecules displays many low-frequency transitions that are assigned to a symmetry-breaking mode with a strongly nonharmonic potential, presumably the out-of-plane wagging mode of the BF(2) group. The data are in good agreement with transition energies and Franck-Condon factors calculated for a double minimum potential in the upper electronic state. The corresponding transitions do not appear in the helium droplet. This is explained with the quasi-rigid first layer of helium atoms attached to the dopant molecule by van der Waals forces. The spectral characteristics are those of a cyanine dye rather than that of an aromatic chromophore.

6.
Rev Sci Instrum ; 80(4): 043302, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19405651

RESUMO

A pulsed valve connected to a closed-cycle cryostat was optimized for producing helium droplets. The pulsed droplet beam appeared with a bimodal size distribution. The leading part of the pulse consists of droplets suitable for doping with molecules. The average size of this part can be varied between 10(4) and 10(6) helium atoms, and the width of the distribution is smaller as compared to a continuous-flow droplet source. The system has been tested in a single pulse mode and at repetition rates of up to 500 Hz with almost constant intensity. The droplet density was found to be increased by more than an order of magnitude as compared to a continuous-flow droplet source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA