Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889142

RESUMO

A key step in the evolutionary transition to multicellularity is the origin of multicellular groups as biological individuals capable of adaptation. Comparative work, supported by theory, suggests clonal development should facilitate this transition, although this hypothesis has never been tested in a single model system. We evolved 20 replicate populations of otherwise isogenic clonally reproducing 'snowflake' yeast (Δace2/∆ace2) and aggregative 'floc' yeast (GAL1p::FLO1 /GAL1p::FLO1) with daily selection for rapid growth in liquid media, which favors faster cell division, followed by selection for rapid sedimentation, which favors larger multicellular groups. While both genotypes adapted to this regime, growing faster and having higher survival during the group-selection phase, there was a stark difference in evolutionary dynamics. Aggregative floc yeast obtained nearly all their increased fitness from faster growth, not improved group survival; indicating that selection acted primarily at the level of cells. In contrast, clonal snowflake yeast mainly benefited from higher group-dependent fitness, indicating a shift in the level of Darwinian individuality from cells to groups. Through genome sequencing and mathematical modeling, we show that the genetic bottlenecks in a clonal life cycle also drive much higher rates of genetic drift-a result with complex implications for this evolutionary transition. Our results highlight the central role that early multicellular life cycles play in the process of multicellular adaptation.


Assuntos
Evolução Biológica , Saccharomyces cerevisiae , Humanos , Animais , Saccharomyces cerevisiae/genética , Estágios do Ciclo de Vida , Modelos Biológicos , Modelos Teóricos
2.
Elife ; 112022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188101

RESUMO

The prevalence of multicellular organisms is due in part to their ability to form complex structures. How cells pack in these structures is a fundamental biophysical issue, underlying their functional properties. However, much remains unknown about how cell packing geometries arise, and how they are affected by random noise during growth - especially absent developmental programs. Here, we quantify the statistics of cellular neighborhoods of two different multicellular eukaryotes: lab-evolved 'snowflake' yeast and the green alga Volvox carteri. We find that despite large differences in cellular organization, the free space associated with individual cells in both organisms closely fits a modified gamma distribution, consistent with maximum entropy predictions originally developed for granular materials. This 'entropic' cellular packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even in the absence of developmental regulation. Together with simulations of diverse growth morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a general feature of multicellularity, arising from conserved statistics of cellular packing.


Assuntos
Evolução Molecular Direcionada , Volvox/genética , Leveduras/genética , Tamanho Celular , Filogenia , Volvox/citologia , Volvox/fisiologia , Leveduras/citologia , Leveduras/fisiologia
3.
PLoS Genet ; 17(8): e1009722, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351900

RESUMO

Experimental evolution with microbes is often highly repeatable under identical conditions, suggesting the possibility to predict short-term evolution. However, it is not clear to what degree evolutionary forecasts can be extended to related species in non-identical environments, which would allow testing of general predictive models and fundamental biological assumptions. To develop an extended model system for evolutionary forecasting, we used previous data and models of the genotype-to-phenotype map from the wrinkly spreader system in Pseudomonas fluorescens SBW25 to make predictions of evolutionary outcomes on different biological levels for Pseudomonas protegens Pf-5. In addition to sequence divergence (78% amino acid and 81% nucleotide identity) for the genes targeted by mutations, these species also differ in the inability of Pf-5 to make cellulose, which is the main structural basis for the adaptive phenotype in SBW25. The experimental conditions were changed compared to the SBW25 system to test if forecasts were extendable to a non-identical environment. Forty-three mutants with increased ability to colonize the air-liquid interface were isolated, and the majority had reduced motility and was partly dependent on the Pel exopolysaccharide as a structural component. Most (38/43) mutations are expected to disrupt negative regulation of the same three diguanylate cyclases as in SBW25, with a smaller number of mutations in promoter regions, including an uncharacterized polysaccharide synthase operon. A mathematical model developed for SBW25 predicted the order of the three main pathways and the genes targeted by mutations, but differences in fitness between mutants and mutational biases also appear to influence outcomes. Mutated regions in proteins could be predicted in most cases (16/22), but parallelism at the nucleotide level was low and mutational hot spot sites were not conserved. This study demonstrates the potential of short-term evolutionary forecasting in experimental populations and provides testable predictions for evolutionary outcomes in other Pseudomonas species.


Assuntos
Evolução Molecular Direcionada/métodos , Previsões/métodos , Pseudomonas/genética , Adaptação Fisiológica/genética , Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Evolução Biológica , Celulose/metabolismo , Meio Ambiente , Evolução Molecular , Mutação/genética , Óperon/genética , Pseudomonas/metabolismo , Pseudomonas fluorescens/genética
4.
Curr Genet ; 67(6): 871-876, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34114051

RESUMO

Multicellularity has evolved numerous times across the tree of life. One of the most fundamental distinctions among multicellular organisms is their developmental mode: whether they stay together during growth and develop clonally, or form a group through the aggregation of free-living cells. The five eukaryotic lineages to independently evolve complex multicellularity (animals, plants, red algae, brown algae, and fungi) all develop clonally. This fact has largely been explained through social evolutionary theory's lens of cooperation and conflict, where cheating within non-clonal groups has the potential to undermine multicellular adaptation. Multicellular organisms that form groups via aggregation could mitigate the costs of cheating by evolving kin recognition systems that prevent the formation of chimeric groups. However, recent work suggests that selection for the ability to aggregate quickly may constrain the evolution of highly specific kin recognition, sowing the seeds for persistent evolutionary conflict. Importantly, other features of aggregative multicellular life cycles may independently act to constrain the evolution of complex multicellularity. All known aggregative multicellular organisms are facultatively multicellular (as opposed to obligately multicellular), allowing unicellular-level adaptation to environmental selection. Because they primarily exist in a unicellular state, it may be difficult for aggregative multicellular organisms to evolve multicellular traits that carry pleiotropic cell-level fitness costs. Thus, even in the absence of social conflict, aggregative multicellular organisms may have limited potential for the evolution of complex multicellularity.


Assuntos
Evolução Biológica , Eucariotos/fisiologia , Evolução Clonal , Eucariotos/citologia
5.
Curr Biol ; 30(21): 4155-4164.e6, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32888478

RESUMO

All multicellular organisms develop through one of two basic routes: they either aggregate from free-living cells, creating potentially chimeric multicellular collectives, or they develop clonally via mother-daughter cellular adhesion. Although evolutionary theory makes clear predictions about trade-offs between these developmental modes, these have never been experimentally tested in otherwise genetically identical organisms. We engineered unicellular baker's yeast (Saccharomyces cerevisiae) to develop either clonally ("snowflake"; Δace2) or aggregatively ("floc"; GAL1p::FLO1) and examined their fitness in a fluctuating environment characterized by periods of growth and selection for rapid sedimentation. When cultured independently, aggregation was far superior to clonal development, providing a 35% advantage during growth and a 2.5-fold advantage during settling selection. Yet when competed directly, clonally developing snowflake yeast rapidly displaced aggregative floc. This was due to unexpected social exploitation: snowflake yeast, which do not produce adhesive FLO1, nonetheless become incorporated into flocs at a higher frequency than floc cells themselves. Populations of chimeric clusters settle much faster than floc alone, providing snowflake yeast with a fitness advantage during competition. Mathematical modeling suggests that such developmental cheating may be difficult to circumvent; hypothetical "choosy floc" that avoid exploitation by maintaining clonality pay an ecological cost when rare, often leading to their extinction. Our results highlight the conflict at the heart of aggregative development: non-specific cellular binding provides a strong ecological advantage-the ability to quickly form groups-but this very feature leads to its exploitation.


Assuntos
Evolução Biológica , Adesão Celular/fisiologia , Modelos Biológicos , Saccharomyces cerevisiae/crescimento & desenvolvimento
6.
Nanotoxicology ; 13(5): 597-605, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30729842

RESUMO

Engineered nanomaterials are rapidly becoming an essential component of modern technology. Thousands of tons of nanomaterials are manufactured, used, and subsequently released into the environment annually. While the presence of these engineered nanomaterials in the environment has profound effects on various biological systems in the short term, little work has been done to understand their consequences over long, evolutionary timescales. The evolution of multicellularity is a critical step in the origin of complex life on Earth and a unique strategy for microorganisms to alleviate adverse environmental impacts, yet the selective pressures that favor the evolution of multicellular groups remain poorly understood. Here, we show that engineered nanomaterials, specifically copper oxide nanoparticles (CuO NPs), promote the evolution of undifferentiated multicellularity in Baker's yeast (Saccharomyces cerevisiae strain Y55). Transcriptomic analysis suggests that multicellularity mitigates the negative effects of CuO NPs in yeast cells and shifts their metabolism from alcoholic fermentation towards aerobic respiration, potentially increasing resource efficiency and providing a fitness benefit during CuO NP exposure. Competition assays also confirm that the multicellular yeast possesses a fitness advantage when exposed to CuO NPs. Our results, therefore, demonstrate that nanoparticles can have profound and unexpected evolutionary consequences, underscoring the need for a more comprehensive understanding of the long-term biological impacts of nanomaterial pollution.


Assuntos
Evolução Biológica , Cobre/toxicidade , Nanopartículas/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transcriptoma/efeitos dos fármacos
7.
Nat Phys ; 14: 286-290, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31723354

RESUMO

The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks (~291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size-a fundamental step in the evolution of multicellularity.

8.
Nat Commun ; 8: 14371, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165005

RESUMO

By nature of their small size, dense growth and frequent need for extracellular metabolism, microbes face persistent public goods dilemmas. Genetic assortment is the only general solution stabilizing cooperation, but all known mechanisms structuring microbial populations depend on the availability of free space, an often unrealistic constraint. Here we describe a class of self-organization that operates within densely packed bacterial populations. Through mathematical modelling and experiments with Vibrio cholerae, we show how killing adjacent competitors via the Type VI secretion system (T6SS) precipitates phase separation via the 'Model A' universality class of order-disorder transition mediated by killing. We mathematically demonstrate that T6SS-mediated killing should favour the evolution of public goods cooperation, and empirically support this prediction using a phylogenetic comparative analysis. This work illustrates the twin role played by the T6SS, dealing death to local competitors while simultaneously creating conditions potentially favouring the evolution of cooperation with kin.


Assuntos
Antibiose/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sistemas de Secreção Tipo VI/fisiologia , Vibrio cholerae/fisiologia , Proteínas de Bactérias/genética , Evolução Biológica , Biologia Computacional , Genoma Bacteriano/fisiologia , Modelos Biológicos , Filogenia
9.
J R Soc Interface ; 13(118)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146690

RESUMO

Recent experiments evolving de novo multicellularity in yeast have found that large cluster-forming genotypes also exhibit higher rates of programmed cell death (apoptosis). This was previously interpreted as the evolution of a simple form of cellular division of labour: apoptosis results in the scission of cell-cell connections, allowing snowflake yeast to produce proportionally smaller, faster-growing propagules. Through spatial simulations, Duran-Nebreda and Solé (J. R. Soc. Interface 12, 20140982 (doi:10.1073/pnas.1115323109)) develop the novel null hypothesis that apoptosis is not an adaptation, per se, but is instead caused by the accumulation of toxic metabolites in large clusters. Here we test this hypothesis by synthetically creating unicellular derivatives of snowflake yeast through functional complementation with the ancestral ACE2 allele. We find that multicellular snowflake yeast with elevated apoptosis exhibit a similar rate of apoptosis when cultured as single cells. We also show that larger snowflake yeast clusters tend to contain a greater fraction of older, senescent cells, which may explain why larger clusters of a given genotype are more apoptotic. Our results show that apoptosis is not caused by side effects of spatial structure, such as starvation or waste product accumulation, and are consistent with the hypothesis that elevated apoptosis is a trait that co-evolves with large cluster size.


Assuntos
Apoptose/genética , Proteínas Fúngicas , Locos de Características Quantitativas , Fatores de Transcrição , Leveduras , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leveduras/genética , Leveduras/metabolismo
10.
Nat Commun ; 4: 2742, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24193369

RESUMO

The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form.


Assuntos
Evolução Biológica , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/genética , Animais , Chlamydomonas reinhardtii/fisiologia , Dados de Sequência Molecular
11.
Evolution ; 67(6): 1573-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23730752

RESUMO

Multicellular complexity is a central topic in biology, but the evolutionary processes underlying its origin are difficult to study and remain poorly understood. Here we use experimental evolution to investigate the tempo and mode of multicellular adaptation during a de novo evolutionary transition to multicellularity. Multicelled "snowflake" yeast evolved from a unicellular ancestor after 7 days of selection for faster settling through liquid media. Over the next 220 days, snowflake yeast evolved to settle 44% more quickly. Throughout the experiment the clusters evolved faster settling by three distinct modes. The number of cells per cluster increased from a mean of 42 cells after 7 days of selection to 114 cells after 227 days. Between days 28 and 65, larger clusters evolved via a twofold increase in the mass of individual cells. By day 227, snowflake yeast evolved to form more hydrodynamic clusters that settle more quickly for their size than ancestral strains. The timing and nature of adaptation in our experiment suggests that costs associated with large cluster size favor novel multicellular adaptations, increasing organismal complexity.


Assuntos
Adaptação Biológica/genética , Saccharomyces cerevisiae/genética , Seleção Genética , Evolução Molecular , Saccharomyces cerevisiae/citologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA