Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Pulm Med ; 23(1): 395, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853365

RESUMO

BACKGROUND: Shipping and port-related air pollution has a significant health impact on a global scale. The present study aimed to assess the mortality burden attributable to long-term exposure to ambient particulate matter (PM2.5, PM10) and nitrogen dioxide (NO2) in the city of Ancona (Italy), with one of the leading national commercial harbours. METHODS: Exposure to air pollutants was derived by dispersion models. The relationship between the long-term exposure of air pollution exposure and cause-specific mortality was evaluated by Poisson regression models, after adjustment for gender, age and socioeconomic status. Results are expressed as percent change of risk (and relative 95% confidence intervals) per 5 unit increases in the exposures. The health impact on the annual number of premature cause-specific deaths was also assessed. RESULTS: PM2.5 and NO2 annual concentrations were higher in the area close to the harbour than in the rest of the city. Positive associations between each pollutant and most of the mortality outcomes were observed, with estimates of up to 7.6% (95%CI 0.1, 15.6%) for 10 µg/m3 increase in NO2 and cardiovascular mortality and 15.3% (95%CI-1.1, 37.2%) for 10 µg/m3 increase PM2.5 and lung cancer. In the subpopulation living close to the harbour, there were excess risks of up to 13.5%, 24.1% and 37.9% for natural, cardiovascular and respiratory mortality. The number of annual premature deaths due to the excess of PM2.5 and NO2 exposure (having as a reference the 2021 World Health Organization Air Quality Guidelines) was 82 and 25, respectively. CONCLUSIONS: Our study confirms the long-term health effects of PM and NO2 on mortality and reveals a higher mortality burden in areas close to shipping and port-related emissions. Estimating the source-specific health burdens is key to achieve a deeper understanding of the role of different emission sources, as well as to support effective and targeted mitigation strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Mortalidade
2.
Atmos Pollut Res ; 13(12): 101620, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474671

RESUMO

Policies to improve air quality need to be based on effective plans for reducing anthropogenic emissions. In 2020, the outbreak of COVID-19 pandemic resulted in significant reductions of anthropogenic pollutant emissions, offering an unexpected opportunity to observe their consequences on ambient concentrations. Taking the national lockdown occurred in Italy between March and May 2020 as a case study, this work tries to infer if and what lessons may be learnt concerning the impact of emission reduction policies on air quality. Variations of NO2, O3, PM10 and PM2.5 concentrations were calculated from numerical model simulations obtained with business as usual and lockdown specific emissions. Both simulations were performed at national level with a horizontal resolution of 4 km, and at local level on the capital city Rome at 1 km resolution. Simulated concentrations showed a good agreement with in-situ observations, confirming the modelling systems capability to reproduce the effects of emission reductions on ambient concentration variations, which differ according to the individual air pollutant. We found a general reduction of pollutant concentrations except for ozone, that experienced an increase in Rome and in the other urban areas, and a decrease elsewhere. The obtained results suggest that acting on precursor emissions, even with sharp reductions like those experienced during the lockdown, may lead to significant, albeit complex, reduction patterns for secondary pollutant concentrations. Therefore, to be more effective, reduction measures should be carefully selected, involving more sectors than those related to mobility, such as residential and agriculture, and integrated on different scales.

3.
Biomolecules ; 12(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36291669

RESUMO

Fabry disease (FD) (OMIM #301500) is a rare genetic lysosomal storage disorder (LSD). LSDs are characterized by inappropriate lipid accumulation in lysosomes due to specific enzyme deficiencies. In FD, the defective enzyme is α-galactosidase A (α-Gal A), which is due to a mutation in the GLA gene on the X chromosome. The enzyme deficiency leads to a continuous deposition of neutral glycosphingolipids (globotriaosylceramide) in the lysosomes of numerous tissues and organs, including endothelial cells, smooth muscle cells, corneal epithelial cells, renal glomeruli and tubules, cardiac muscle and ganglion cells of the nervous system. This condition leads to progressive organ failure and premature death. The increasing understanding of FD, and LSD in general, has led in recent years to the introduction of enzyme replacement therapy (ERT), which aims to slow, if not halt, the progression of the metabolic disorder. In this review, we provide an overview of the main features of FD, focusing on its molecular mechanism and the role of biomarkers.


Assuntos
Doença de Fabry , Humanos , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Biomarcadores , Células Endoteliais/metabolismo , Doença de Fabry/genética , Doença de Fabry/terapia
4.
Occup Environ Med ; 79(3): 192-199, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35012995

RESUMO

OBJECTIVES: To investigate the association between long-term exposure to airborne pollutants and the incidence of SARS-CoV-2 up to March 2021 in a prospective study of residents in Varese city. METHODS: Citizens of Varese aged ≥18 years as of 31 December 2019 were linked by residential address to 2018 average annual exposure to outdoor concentrations of PM2.5, PM10, NO2, NO and ozone modelled using the Flexible Air quality Regional Model (FARM) chemical transport model. Citizens were further linked to regional datasets for COVID-19 case ascertainment (positive nasopharyngeal swab specimens) and to define age, sex, living in a residential care home, population density and comorbidities. We estimated rate ratios and additional numbers of cases per 1 µg/m3 increase in air pollutants from single- and bi-pollutant Poisson regression models. RESULTS: The 62 848 residents generated 4408 cases. Yearly average PM2.5 exposure was 12.5 µg/m3. Age, living in a residential care home, history of stroke and medications for diabetes, hypertension and obstructive airway diseases were independently associated with COVID-19. In single-pollutant multivariate models, PM2.5 was associated with a 5.1% increase in the rate of COVID-19 (95% CI 2.7% to 7.5%), corresponding to 294 additional cases per 100 000 person-years. The association was confirmed in bi-pollutant models; excluding subjects in residential care homes; and further adjusting for area-based indicators of socioeconomic level and use of public transportation. Similar findings were observed for PM10, NO2 and NO. Ozone was associated with a 2% decrease in disease rate, the association being reversed in bi-pollutant models. CONCLUSIONS: Long-term exposure to low levels of air pollutants, especially PM2.5, increased the incidence of COVID-19. The causality warrants confirmation in future studies; meanwhile, government efforts to further reduce air pollution should continue.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/efeitos adversos , COVID-19/epidemiologia , Exposição Ambiental/análise , SARS-CoV-2 , Adulto , Idoso , Feminino , Humanos , Incidência , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Características de Residência , Fatores de Tempo , População Urbana
5.
Sci Total Environ ; 807(Pt 3): 151034, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34666080

RESUMO

BACKGROUND/AIM: The relationship between air pollution and respiratory morbidity has been widely addressed in urban and metropolitan areas but little is known about the effects in non-urban settings. Our aim was to assess the short-term effects of PM10 and PM2.5 on respiratory admissions in the whole country of Italy during 2006-2015. METHODS: We estimated daily PM concentrations at the municipality level using satellite data and spatiotemporal predictors. We collected daily counts of respiratory hospital admissions for each Italian municipality. We considered five different outcomes: all respiratory diseases, asthma, chronic obstructive pulmonary disease (COPD), lower and upper respiratory tract infections (LRTI and URTI). Meta-analysis of province-specific estimates obtained by time-series models, adjusting for temperature, humidity and other confounders, was applied to extrapolate national estimates for each outcome. At last, we tested for effect modification by sex, age, period, and urbanization score. Analyses for PM2.5 were restricted to 2013-2015 cause the goodness of fit of exposure estimation. RESULTS: A total of 4,154,887 respiratory admission were registered during 2006-2015, of which 29% for LRTI, 12% for COPD, 6% for URTI, and 3% for asthma. Daily mean PM10 and PM2.5 concentrations over the study period were 23.3 and 17 µg/m3, respectively. For each 10 µg/m3 increases in PM10 and PM2.5 at lag 0-5 days, we found excess risks of total respiratory diseases equal to 1.20% (95% confidence intervals, 0.92, 1.49) and 1.22% (0.76, 1.68), respectively. The effects for the specific diseases were similar, with the strongest ones for asthma and COPD. Higher effects were found in the elderly and in less urbanized areas. CONCLUSIONS: Short-term exposure to PM is harmful for the respiratory system throughout an entire country, especially in elderly patients. Strong effects can be found also in less urbanized areas.


Assuntos
Poluição do Ar , Material Particulado , Idoso , Poluição do Ar/estatística & dados numéricos , Hospitalização , Humanos , Itália/epidemiologia , Material Particulado/efeitos adversos , Urbanização
6.
Front Cardiovasc Med ; 9: 1099508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704457

RESUMO

We report the case of drug-induced type 1 Brugada syndrome at high arrhythmic risk associated with Lamin A/C gene mutation.

8.
Environ Res ; 192: 110351, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130163

RESUMO

Long-term exposure to air pollution has been related to mortality in several epidemiological studies. The investigations have assessed exposure using various methods achieving different accuracy in predicting air pollutants concentrations. The comparison of the health effects estimates are therefore challenging. This paper aims to compare the effect estimates of the long-term effects of air pollutants (particulate matter with aerodynamic diameter less than 10 µm, PM10, and nitrogen dioxide, NO2) on cause-specific mortality in the Rome Longitudinal Study, using exposure estimates obtained with different models and spatial resolutions. Annual averages of NO2 and PM10 were estimated for the year 2015 in a large portion of the Rome urban area (12 × 12 km2) applying three modelling techniques available at increasing spatial resolution: 1) a chemical transport model (CTM) at 1km resolution; 2) a land-use random forest (LURF) approach at 200m resolution; 3) a micro-scale Lagrangian particle dispersion model (PMSS) taking into account the effect of buildings structure at 4 m resolution with results post processed at different buffer sizes (12, 24, 52, 100 and 200 m). All the exposures were assigned at the residential addresses of 482,259 citizens of Rome 30+ years of age who were enrolled on 2001 and followed-up till 2015. The association between annual exposures and natural-cause, cardiovascular (CVD) and respiratory (RESP) mortality were estimated using Cox proportional hazards models adjusted for individual and area-level confounders. We found different distributions of both NO2 and PM10 concentrations, across models and spatial resolutions. Natural cause and CVD mortality outcomes were all positively associated with NO2 and PM10 regardless of the model and spatial resolution when using a relative scale of the exposure such as the interquartile range (IQR): adjusted Hazard Ratios (HR), and 95% confidence intervals (CI), of natural cause mortality, per IQR increments in the two pollutants, ranged between 1.012 (1.004, 1.021) and 1.018 (1.007, 1.028) for the different NO2 estimates, and between 1.010 (1.000, 1.020) and 1.020 (1.008, 1.031) for PM10, with a tendency of larger effect for lower resolution exposures. The latter was even stronger when a fixed value of 10 µg/m3 is used to calculate HRs. Long-term effects of air pollution on mortality in Rome were consistent across different models for exposure assessment, and different spatial resolutions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/análise , Estudos Longitudinais , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Material Particulado/análise , Material Particulado/toxicidade
9.
Sci Total Environ ; 724: 138102, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32268284

RESUMO

Cities are severely affected by air pollution. Local emissions and urban structures can produce large spatial heterogeneities. We aim to improve the estimation of NO2, O3, PM2.5 and PM10 concentrations in 6 Italian metropolitan areas, using chemical-transport and machine learning models, and to assess the effect on population exposure by using information on urban population mobility. Three years (2013-2015) of simulations were performed by the Chemical-Transport Model (CTM) FARM, at 1 km resolution, fed by boundary conditions provided by national-scale simulations, local emission inventories and meteorological fields. A downscaling of daily air pollutants at higher resolution (200 m) was then carried out by means of a machine learning Random-Forest (RF) model, considering CTM and spatial-temporal predictors, such as population, land-use, surface greenness and vehicular traffic, as input. RF achieved mean cross-validation (CV) R2 of 0.59, 0.72, 0.76 and 0.75 for NO2, PM10, PM2.5 and O3, respectively, improving results from CTM alone. Mean concentration fields exhibited clear geographical gradients caused by climate conditions, local emission sources and photochemical processes. Time series of population weighted exposure (PWE) were estimated for two months of the year 2015 and for five cities, by combining population mobility data (derived from mobile phone traffic volumes data), and concentration levels from the RF model. PWE_RF metric better approximated the observed concentrations compared with the predictions from either CTM alone or CTM and RF combined, especially for pollutants exhibiting strong spatial gradients, such as NO2. 50% of the population was estimated to be exposed to NO2 concentrations between 12 and 38 µg/m3 and PM10 between 20 and 35 µg/m3. This work supports the potential of machine learning methods in predicting air pollutant levels in urban areas at high spatial and temporal resolutions.

10.
Front Med (Lausanne) ; 7: 631148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585520

RESUMO

Most recent studies have stressed a high risk of thromboembolism in patients with SARS-CoV-2 infection, particularly in those with severe COVID-19 pneumonia. Counterbalance between angiotensin-converting-enzyme (ACE) and ACE2 activities in COVID-19 disease may be crucially involved in the thrombo-inflammatory process. Currently, no study has investigated ACE I/D polymorphism involvement in COVID-19 disease complicated by pulmonary embolism, hence the aim of the present pilot study. This is a retrospective, single-center observational case-control study, conducted at the Sub-Intensive Care Unit of A.O.R.N. Ospedali dei Colli, Cotugno Hospital, Naples (Italy). We included 68 subjects with severe/critical COVID-19 pneumonia. COVID-19 patients were divided according to occurrence of PE (PE+, n = 25) or absence of thromboembolic complications (PE-, n = 43). Assessment of ACE I/D polymorphisms showed a statistically significant difference between PE+ and PE- patients (p = 0.029). Particularly, prevalence of D/D homozygous polymorphism was significantly higher in PE+ COVID-19 patients than in PE- (72 vs. 46.5%; p = 0.048), while heterozygote I/D polymorphism was significantly lower expressed in PE+ patients than in PE- (16 vs. 48.8%; p = 0.009). Computed tomographic pulmonary angiography showed predominantly mono/bilateral sub-segmental embolisms. In conclusion, our findings let us hypothesize a genetic susceptibility to thromboembolism in COVID-19 disease. ACE D/D polymorphism might represent a genetic risk factor, although studies on larger populations are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA