Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891109

RESUMO

Chondrosarcoma (ChS), a malignant cartilage-producing tumor, is the second most frequently diagnosed osseous sarcoma after osteosarcoma. It represents a very heterogeneous group of malignant chemo- and radiation-resistant neoplasms, accounting for approximately 20% of all bone sarcomas. The majority of ChS patients have a good prognosis after a complete surgical resection, as these tumors grow slowly and rarely metastasize. Conversely, patients with inoperable disease, due to the tumor location, size, or metastases, represent a great clinical challenge. Despite several genetic and epigenetic alterations that have been described in distinct ChS subtypes, very few therapeutic options are currently available for ChS patients. Therefore, new prognostic factors for tumor progression as well as new treatment options have to be explored, especially for patients with unresectable or metastatic disease. Recent studies have shown that a correlation between immune infiltrate composition, tumor aggressiveness, and survival does exist in ChS patients. In addition, the intra-tumor microvessel density has been proven to be associated with aggressive clinical behavior and a high metastatic potential in ChS. This review will provide an insight into the ChS microenvironment, since immunotherapy and antiangiogenic agents are emerging as interesting therapeutic options for ChS patients.


Assuntos
Condrossarcoma , Microambiente Tumoral , Humanos , Condrossarcoma/patologia , Condrossarcoma/genética , Condrossarcoma/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Imunoterapia , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia
2.
Cancers (Basel) ; 14(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884605

RESUMO

The essential roles endorsed by macrophages and monocytes are well established in response to infections, where they contribute to launching the differentiation of specific T-lymphocytes for long-term protection. This knowledge is the result of dynamic studies that can inspire the cancer field, particularly now that cancer immunotherapies elicit some tumor regression. Indeed, immune responses to cancer have mainly been studied after tumors have escaped immune attacks. In particular, the suppressive functions of macrophages were revealed in this context, introducing an obvious bias across the literature. In this review, we will focus on the ways inwhich monocytes and macrophages cooperate with T-lymphocytes, leading to successful immune responses. We will bring together the preclinical studies that have revealed the existence of such positive cooperation in the cancer field, and we will place particular emphasis on proposing the underlying mechanisms. Finally, we will give some perspectives to decipher the functional roles of such T-cell and myeloid cell interactions in the frame of human cancer immunotherapy.

4.
Front Immunol ; 11: 1590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793228

RESUMO

Immune checkpoint inhibitors are becoming standard treatments in several cancer types, profoundly changing the prognosis of a fraction of patients. Currently, many efforts are being made to predict responders and to understand how to overcome resistance in non-responders. Given the crucial role of myeloid cells as modulators of T effector cell function in tumors, it is essential to understand their impact on the clinical outcome of immune checkpoint blockade and on the mechanisms of immune evasion. In this review we focus on the existing clinical evidence of the relation between the presence of myeloid cell subsets and the response to anti-PD(L)1 and anti-CTLA-4 treatment. We highlight how circulating and tumor-infiltrating myeloid populations can be used as predictive biomarkers for immune checkpoint inhibitors in different human cancers, both at baseline and on treatment. Moreover, we propose to follow the dynamics of myeloid cells during immunotherapy as pharmacodynamic biomarkers. Finally, we provide an overview of the current strategies tested in the clinic that use myeloid cell targeting together with immune checkpoint blockade with the aim of uncovering the most promising approaches for effective combinations.


Assuntos
Biomarcadores , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas de Checkpoint Imunológico/metabolismo , Células Mieloides/metabolismo , Animais , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia de Alvo Molecular , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Resultado do Tratamento
5.
Cancer Immunol Res ; 7(12): 1958-1969, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31611243

RESUMO

Trifluridine/tipiracil (FTD/TPI) is a new antimetabolite agent used to treat chemorefractory metastatic colorectal cancer. FTD/TPI induced immunogenic cell death (ICD) in vitro in the microsatellite-stable (MSS) CT26 mouse colon carcinoma cell line, as well as in various human MSS colorectal cancer cell lines (SW620, Caco-2, and Colo-320). The combination of FTD/TPI with oxaliplatin synergized to promote ICD. In vivo, the combination was able to induce ICD, but not the single agents, although all treatment groups showed T-cell dependency. In addition, FTD/TPI and oxaliplatin did not affect regulatory T cells or myeloid-derived suppressor cells but eliminated type-2 tumor-associated macrophages (TAM2), resulting in higher cytotoxic CD8+ T-cell infiltration and activation. This effect was concomitantly associated with PD-L1 expression on tumor cells and PD-1 induction on CD8+ T cells, leading to secondary T-cell exhaustion. Finally, although anti-PD-1 was unable to synergize with FTD/TPI or oxaliplatin monotherapy, concomitant administration of anti-PD-1 to FTD/TPI and oxaliplatin enhanced the antitumor efficacy of the double chemotherapy. Our study showed a novel immunomodulatory role of FTD/TPI and oxaliplatin in depleting TAM2. The combination of oxaliplatin and FTD/TPI induced ICD in vivo, providing a rationale for the use of these drugs to eliminate immunosuppressive cells and boost checkpoint efficacy in patients with metastatic colorectal cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Oxaliplatina/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Pirrolidinas/uso terapêutico , Trifluridina/uso terapêutico , Uracila/análogos & derivados , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Combinação de Medicamentos , Feminino , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxaliplatina/farmacologia , Pirrolidinas/farmacologia , Timina , Trifluridina/farmacologia , Uracila/farmacologia , Uracila/uso terapêutico
6.
Cancer Immunol Res ; 7(11): 1849-1863, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31527069

RESUMO

ß-Adrenergic receptor (ß-AR) signaling exerts protumoral effects by acting directly on tumor cells and angiogenesis. In addition, ß-AR expression on immune cells affects their ability to mount antitumor immune responses. However, how ß-AR signaling impinges antitumor immune responses is still unclear. Using a mouse model of vaccine-based immunotherapy, we showed that propranolol, a nonselective ß-blocker, strongly improved the efficacy of an antitumor STxBE7 vaccine by enhancing the frequency of CD8+ T lymphocytes infiltrating the tumor (TIL). However, propranolol had no effect on the reactivity of CD8+ TILs, a result further strengthened by ex vivo experiments showing that these cells were insensitive to adrenaline- or noradrenaline-induced AR signaling. In contrast, naïve CD8+ T-cell activation was strongly inhibited by ß-AR signaling, and the beneficial effect of propranolol mainly occurred during CD8+ T-cell priming in the tumor-draining lymph node. We also demonstrated that the differential sensitivity of naïve CD8+ T cells and CD8+ TILs to ß-AR signaling was linked to a strong downregulation of ß2-AR expression related to their activation status, since in vitro-activated CD8+ T cells behaved similarly to CD8+ TILs. These results revealed that ß-AR signaling suppresses the initial priming phase of antitumor CD8+ T-cell responses, providing a rationale to use clinically available ß-blockers in patients to improve cancer immunotherapies.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/uso terapêutico , Células Cultivadas , Imunoterapia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Hum Vaccin Immunother ; 15(1): 189-192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30192699

RESUMO

T cell-based immunotherapies have revolutionized the treatment against cancer. But complete and long-lasting efficacy is only observed in a fraction of the patient population. One of the suspected causes is the inability of cytotoxic T cells, endowed with tumor killing ability, to reach their malignant targets. Using dynamic fluorescence imaging to study the dynamic of T cells in tumors from patients with lung cancer, we have recently demonstrated that macrophages trap the T lymphocytes, which are not longer able to contact the tumor cells. In murine models of breast cancer, we could show that the depletion of macrophages allows T cells to interact with tumor cells, a process which enhances anti-PD-1 immunotherapy. These findings illustrate the relevance of current clinical trials combining a strategy that deplete or modulate macrophages with anti-PD-1 immunotherapy.


Assuntos
Imunoterapia/métodos , Macrófagos/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Movimento Celular , Ensaios Clínicos como Assunto , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Citotóxicos/fisiologia , Microambiente Tumoral
9.
Proc Natl Acad Sci U S A ; 115(29): E6826-E6835, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967180

RESUMO

Antibody-secreting plasma cells (PCs) arise rapidly during adaptive immunity to control infections. The early PCs are retained within the reactive lymphoid organ where their localization and homeostasis rely on extrinsic factors, presumably produced by local niche cells. While myeloid cells have been proposed to form those niches, the contribution by colocalizing stromal cells has remained unclear. Here, we characterized a subset of fibroblastic reticular cells (FRCs) that forms a dense meshwork throughout medullary cords of lymph nodes (LNs) where PCs reside. This medullary FRC type is shown to be anatomically, phenotypically, and functionally distinct from T zone FRCs, both in mice and humans. By using static and dynamic imaging approaches, we provide evidence that medullary FRCs are the main cell type in contact with PCs guiding them in their migration. Medullary FRCs also represent a major local source of the PC survival factors IL-6, BAFF, and CXCL12, besides also producing APRIL. In vitro, medullary FRCs alone or in combination with macrophages promote PC survival while other LN cell types do not have this property. Thus, we propose that this FRC subset, together with medullary macrophages, forms PC survival niches within the LN medulla, and thereby helps in promoting the rapid development of humoral immunity, which is critical in limiting early pathogen spread.


Assuntos
Formação de Anticorpos , Homeostase/imunologia , Linfonodos/imunologia , Plasmócitos/imunologia , Animais , Fator Ativador de Células B/imunologia , Quimiocina CXCL12/imunologia , Interleucina-6/imunologia , Linfonodos/citologia , Masculino , Camundongos , Plasmócitos/citologia , Células Estromais/citologia , Células Estromais/imunologia
10.
Proc Natl Acad Sci U S A ; 115(17): E4041-E4050, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632196

RESUMO

In a large proportion of cancer patients, CD8 T cells are excluded from the vicinity of cancer cells. The inability of CD8 T cells to reach tumor cells is considered an important mechanism of resistance to cancer immunotherapy. We show that, in human lung squamous-cell carcinomas, exclusion of CD8 T cells from tumor islets is correlated with a poor clinical outcome and with a low lymphocyte motility, as assessed by dynamic imaging on fresh tumor slices. In the tumor stroma, macrophages mediate lymphocyte trapping by forming long-lasting interactions with CD8 T cells. Using a mouse tumor model with well-defined stromal and tumor cell areas, macrophages were depleted with PLX3397, an inhibitor of colony-stimulating factor-1 receptor (CSF-1R). Our results reveal that a CSF-1R blockade enhances CD8 T cell migration and infiltration into tumor islets. Although this treatment alone has minor effects on tumor growth, its combination with anti-PD-1 therapy further increases the accumulation of CD8 T cells in close contact with malignant cells and delays tumor progression. These data suggest that the reduction of macrophage-mediated T cell exclusion increases tumor surveillance by CD8 T cells and renders tumors more responsive to anti-PD-1 treatment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/imunologia , Macrófagos/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Aminopiridinas/farmacologia , Animais , Linfócitos T CD8-Positivos/patologia , Carcinoma de Células Escamosas/patologia , Seguimentos , Macrófagos/patologia , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Pirróis/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Estudos Retrospectivos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncoimmunology ; 6(10): e1346765, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123960

RESUMO

Regressing tumors are usually associated with a large immune infiltrate, but the molecular and cellular interactions that govern a successful anti-tumor immunity remain elusive. Here, we have triggered type I Interferon (IFN) signaling in a breast tumor model (MMTV-PyMT) using 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a ligand of the STimulator of Interferon Genes, STING. The 2 main events rapidly triggered by DMXAA in transplanted PyMT tumors are 1) the disruption of the tumor vasculature, followed by hypoxia and cell death; 2) the release of chemokines. Both events converged to trigger the recruitment of 2 waves of immune cells: a swift, massive recruitment of neutrophils, followed by a delayed rise in monocytes and CD8 T cells in the tumor mass. Depletion experiments in vivo revealed that myeloid cell subsets and T cells need to cooperate to achieve full-blown recruitment and activation at the tumor site and to induce effective secondary cell death leading to tumor regression (Illustration 1). Altogether, our study highlights that the tumor regression induced by the STING agonist DMXAA results from a cascade of events, with an initial vessel destruction followed by several infiltration waves of immune cells which have to cooperate to amplify and sustain the initial effect. We thus provide the first global and detailed kinetic analysis of the anti-tumoral effect of DMXAA and of its different articulated steps.

12.
J Immunol ; 199(6): 1998-2007, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28779024

RESUMO

So far, peripheral T cells have mostly been described to circulate between blood, secondary lymphoid organs (SLOs), and lymph in the steady state. This nomadic existence would allow them to accomplish their surveying task for both foreign Ags and survival signals. Although it is now well established that γδ T cells can be rapidly recruited to inflammatory sites or in certain tumor microenvironments, the trafficking properties of peripheral γδ T cells have been poorly studied in the steady state. In the present study, we highlight the existence of resident γδ T cells in the SLOs of specific pathogen-free mice. Indeed, using several experimental approaches such as the injection of integrin-neutralizing Abs that inhibit the entry of circulating lymphocytes into lymph nodes and long-term parabiosis experiments, we have found that, contrary to Ly-6C-/+CD44lo and Ly-6C+CD44hi γδ T cells, a significant proportion of Ly-6C-CD44hi γδ T cells are trapped for long periods of time within lymph nodes and the spleen in the steady state. Specific in vivo cell depletion strategies have allowed us to demonstrate that macrophages are the main actors involved in this long-term retention of Ly-6C-CD44hi γδ T cells in SLOs.


Assuntos
Linfonodos/imunologia , Macrófagos/imunologia , Baço/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Antígenos Ly/metabolismo , Comunicação Celular , Movimento Celular , Células Cultivadas , Receptores de Hialuronatos/metabolismo , Imunidade Inata , Vigilância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
13.
J Vis Exp ; (130)2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29364247

RESUMO

CD8 T cell are key players in the fight against cancer. In order for CD8 T cells to kill tumor cells they need to enter into the tumor, migrate within the tumor microenvironment and respond adequately to tumor antigens. The recent development of improved imaging approaches, such as 2-photon microscopy, and the use of powerful mouse tumor models have shed light on some of the mechanisms that regulate anti-tumor T cell activities. Whereas such systems have provided valuable insights, they do not always predict human responses. In human, our knowledge in the field mainly comes from a description of fixed tumor samples from human patients, as well as in vitro studies. However, in vitro models lack the complex three-dimensional tumor milieu and, therefore, are incomplete approximations of in vivo T cell activities. Fresh slices made from explanted tissue represent a complex multi-cellular tumor environment that can act as an important link between co-cultured studies and animal models. Originally set up in murine lymph nodes1 and previously described in a JoVE article2, this approach has now been transposed to human tumors to examine the dynamics of both plated3 as well as resident T cells4. Here, a protocol for the preparation of human lung tumor slices, immunostaining of resident CD8 T and tumor cells, and tracking of CD8 T lymphocytes within the tumor microenvironment using confocal microscopy is described. This system is uniquely placed to screen for novel immunotherapy agents favoring T cell migration in tumors.


Assuntos
Linfócitos T CD8-Positivos/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Microscopia Confocal/métodos , Linfócitos T CD8-Positivos/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia
14.
Front Immunol ; 6: 500, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528284

RESUMO

T cells play a key role in the battle against cancer. To perform their antitumor activities, T cells need to adequately respond to tumor antigens by establishing contacts with either malignant cells or antigen-presenting cells. These latter functions rely on a series of migratory steps that go from entry of T cells into the tumor followed by their locomotion in the tumor stroma. Our knowledge of how T cells migrate within tumors mainly comes from experiments performed in mouse models. Whereas such systems have greatly advanced our understanding, they do not always faithfully recapitulate the disease observed in cancer patients. We previously described a technique based on tissue slices that enables to track with real-time imaging microscopy the motile behavior of fluorescent T cells plated onto fresh sections of human lung tumors. We have now refined this approach to monitor the locomotion of resident tumor-infiltrating CD8 T cells labeled with fluorescently coupled antibodies. Using this approach, our findings reveal that CD8 T cells accumulate in the stroma of ovarian and lung carcinomas but move slowly in this compartment. Conversely, even though less populated, tumors islets were found to be zones of faster migration for resident CD8 T cells. We also confirm the key role played by collagen fibers, which, by their orientation, spacing and density, control the distribution and migration of resident CD8 T cells within the tumor stroma. We have subsequently demonstrated that, under some physical tissue constraints, CD8 T cells exhibited a mode of migration characterized by alternate forward and backward movements. In sum, using an ex vivo assay to track CD8 T cells in fresh human tumor tissues, we have identified the extracellular matrix as a major stromal component in influencing T cell migration, thereby impacting the control of tumor growth. This approach will aid in the development and testing of novel immunotherapy strategies to promote T cell migration in tumors.

15.
Immunity ; 38(6): 1236-49, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23809164

RESUMO

Tumor progression is accompanied by an altered myelopoiesis causing the accumulation of immunosuppressive cells. Here, we showed that miR-142-3p downregulation promoted macrophage differentiation and determined the acquisition of their immunosuppressive function in tumor. Tumor-released cytokines signaling through gp130, the common subunit of the interleukin-6 cytokine receptor family, induced the LAP∗ isoform of C/EBPß transcription factor, promoting macrophage generation. miR-142-3p downregulated gp130 by canonical binding to its messenger RNA (mRNA) 3' UTR and repressed C/EBPß LAP∗ by noncanonical binding to its 5' mRNA coding sequence. Enforced miR expression impaired macrophage differentiation both in vitro and in vivo. Mice constitutively expressing miR-142-3p in the bone marrow showed a marked increase in survival following immunotherapy with tumor-specific T lymphocytes. By modulating a specific miR in bone marrow precursors, we thus demonstrated the feasibility of altering tumor-induced macrophage differentiation as a potent tool to improve the efficacy of cancer immunotherapy.


Assuntos
Imunoterapia/métodos , Macrófagos/imunologia , MicroRNAs/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , RNA Mensageiro/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Receptor gp130 de Citocina/metabolismo , Imunoterapia/tendências , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Mielopoese/genética , Neoplasias Experimentais/terapia , RNA Mensageiro/genética , Transdução de Sinais , Esteroide Isomerases/genética , Esteroide Isomerases/metabolismo , Linfócitos T/imunologia , Linfócitos T/transplante , Transgenes/genética , Evasão Tumoral
16.
Cell Mol Life Sci ; 70(23): 4431-48, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23649148

RESUMO

The migration of T cells and access to tumor antigens is of utmost importance for the induction of protective anti-tumor immunity. Once having entered a malignant site, T cells encounter a complex environment composed of non-tumor cells along with the extracellular matrix (ECM). It is now well accepted that a deregulated ECM favors tumor progression and metastasis. Recent progress in imaging technologies has also highlighted the impact of the matrix architecture found in solid tumor on immune cells and especially T cells. In this review, we argue that the ability of T cells to mount an antitumor response is dependent on the matrix structure, more precisely on the balance between pro-migratory reticular fiber networks and unfavorable migration zones composed of dense and aligned ECM structures. Thus, the matrix architecture, that has long been considered to merely provide the structural framework of connective tissues, can play a key role in facilitating or suppressing the antitumor immune surveillance. A new challenge in cancer therapy will be to develop approaches aimed at altering the architecture of the tumor stroma, rendering it more permissive to antitumor T cells.


Assuntos
Matriz Extracelular/imunologia , Vigilância Imunológica/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Movimento Celular/imunologia , Progressão da Doença , Matriz Extracelular/metabolismo , Humanos , Modelos Imunológicos , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Linfócitos T/citologia , Linfócitos T/metabolismo
17.
Cell Rep ; 2(3): 628-39, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22959433

RESUMO

Peripheral tolerance to tumor antigens (Ags) is a major hurdle for antitumor immunity. Draining lymph nodes are considered the privileged sites for Ag presentation to T cells and for the onset of peripheral tolerance. Here, we show that the spleen is fundamentally important for tumor-induced tolerance. Splenectomy restores lymphocyte function and induces tumor regression when coupled with immunotherapy. Splenic CD11b(+)Gr-1(int)Ly6C(hi) cells, mostly comprising proliferating CCR2(+)-inflammatory monocytes with features of myeloid progenitors, expand in the marginal zone of the spleen. Here, they alter the normal tissue cytoarchitecture and closely associate with memory CD8(+) T cells, cross-presenting tumor Ags and causing their tolerization. Because of its high proliferative potential, this myeloid cell subset is also susceptible to low-dose chemotherapy, which can be exploited as an adjuvant to passive immunotherapy. CCL2 serum levels in cancer patients are directly related to the accumulation of immature myeloid cells and are predictive for overall survival in patients who develop a multipeptide response to cancer vaccines.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Tolerância Imunológica , Monócitos/imunologia , Neoplasias/imunologia , Baço/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Memória Imunológica , Camundongos , Monócitos/patologia , Neoplasias/patologia , Baço/patologia
18.
Cancer Metastasis Rev ; 30(1): 27-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21267772

RESUMO

Tumour development is accompanied by an enhanced haematopoiesis. This is not a widespread activation since only cells belonging to the myelo-monocytic compartment are expanded and mobilized from primary sites of haematopoiesis to other organs, reaching also the tumour stroma. This process occurs early during tumour formation but becomes more evident in advanced disease. Far from being a simple, unwanted consequence of cancer development, accumulation of myelo-monocytitc cells plays a role in tumour vascularization, local spreading, establishment of metastasis at distant sites, and contribute to create an environment unfavourable for the adoptive immunity against tumour-associated antigens. Myeloid populations involved in these process are likely different but many cells, expanded in primary and secondary lymphoid organs of tumour-bearing mice, share various levels of the CD11b and Gr-1 (Ly6C/G) markers. CD11b(+)Gr-1(+) cells are currently named myeloid-derived suppressor cells for their ability to inhibit T lymphocyte responses in tumour-bearing hosts. In this manuscript, we review the recent literature on tumour-conditioned myeloid subsets that assist tumour growth, both in mice and humans.


Assuntos
Células Mieloides/citologia , Células Mieloides/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Animais , Humanos
19.
Curr Protoc Immunol ; Chapter 14: Unit 14.17, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21053303

RESUMO

This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.


Assuntos
Técnicas Imunológicas , Terapia de Imunossupressão , Ativação Linfocitária , Células Mieloides/imunologia , Animais , Bioquímica/métodos , Proliferação de Células , Citotoxicidade Imunológica , Humanos , Tolerância Imunológica , Terapia de Imunossupressão/métodos , Biologia Molecular/métodos , Linfócitos T/imunologia
20.
Curr Opin Immunol ; 22(2): 238-44, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20171075

RESUMO

Myeloid derived suppressor cells (MDSCs) are defined in mice on the basis of CD11b and Gr-1 marker expression and the functional ability to inhibit T lymphocyte activation. Nevertheless the term 'heterogeneous' remains the first, informal feature commonly attributed to this population. It is clear that CD11b(+)Gr-1(+) cells are part of a myeloid macropopulation, which comprises at least two subsets of polymorphonuclear and monocytic cells with different immunosuppressive properties. While recent literature shows substantial agreement on the immunoregulatory property of the monocytic MDSC subset, there is still contrasting evidence on the role of the granulocytic fraction. Moreover, this dichotomy holds true for human MDSCs. We attempt here to summarize conflicting findings in the field and provide some possible, unifying explanations.


Assuntos
Hematopoese , Tolerância Imunológica , Células Mieloides/imunologia , Células Progenitoras Mieloides/imunologia , Neoplasias/imunologia , Animais , Antígenos de Diferenciação/imunologia , Antígeno CD11b , Humanos , Camundongos , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Receptores de Quimiocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA