Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 375(6582): 730, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175819
2.
ACS Omega ; 7(5): 3872-3880, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155884

RESUMO

In this research, we perform a theoretical interpretation of molecular and electronic properties of reduced graphene oxide (rGO) nanoflakes through the density functional theory. Here, two pristine graphene nanoflake systems were passivated by hydrogen atoms at their edges, armchair (C58H20) and zigzag (C54H20); besides, we implemented 12 rGO systems with a range of low oxide coverage (1, 3, and 4%). Computational calculations were carried out employing the functional hybrid B3LYP and the basis 6-31G(d, p) and 6-311G(d, p) levels of theory. We brought the proposed molecular structures to a stable minimum. We determined the global reactivity descriptors through chemical potential, hardness, softness, and index of electrophilicity. Besides, the maps of electrostatic potential were generated. We found that the hydroxyl and epoxy functional groups dope the graphene molecule in p-type and n-type forms, respectively. In addition, we could attribute the increases of the oxide coverage and the chemical potential to the softness of the molecule. These results suggest that structures with this type of doping can help in developing advanced electronics of sensors and devices.

3.
Adv Mater ; 32(14): e1907801, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32049386

RESUMO

Fundamental advances to increase the efficiency as well as stability of organic photovoltaics (OPVs) are achieved by designing ternary blends, which represents a clear trend toward multicomponent active layer blends. The development of high-throughput and autonomous experimentation methods is reported for the effective optimization of multicomponent polymer blends for OPVs. A method for automated film formation enabling the fabrication of up to 6048 films per day is introduced. Equipping this automated experimentation platform with a Bayesian optimization, a self-driving laboratory is constructed that autonomously evaluates measurements to design and execute the next experiments. To demonstrate the potential of these methods, a 4D parameter space of quaternary OPV blends is mapped and optimized for photostability. While with conventional approaches, roughly 100 mg of material would be necessary, the robot-based platform can screen 2000 combinations with less than 10 mg, and machine-learning-enabled autonomous experimentation identifies stable compositions with less than 1 mg.

4.
Materials (Basel) ; 12(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875798

RESUMO

We report here on the development of composite thick films exhibiting hybrid superconducting and ferromagnetic properties, produced through a low-cost, fast, and versatile process. These films were made of high Tc cuprate superconductor Bi2Sr2(Ca,Y)2Cu3O10 (with Y:Ca ratio of 5%) and ferromagnetic perovskite La2/3Ba1/3MnO3, synthesized by melting-quenching annealing process on a MgO substrate. Curie temperature for La2/3Ba1/3MnO3 was determined (~336 K ) by magnetic field assisted thermogravimetric analysis (TGA), while superconducting behavior of Bi2Sr2(Ca,Y)2Cu3O10/MgO films was observed through temperature-dependent resistance measurements. Superconducting features in our hybrid compound were corroborated by temperature-dependent resistivity and magnetic susceptibility.

7.
Nano Lett ; 17(5): 2765-2770, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28388067

RESUMO

In the past few years, hybrid organic-inorganic and all-inorganic metal halide perovskite nanocrystals have become one of the most interesting materials for optoelectronic applications. Here, we report a facile and rapid room temperature synthesis of 15-25 nm formamidinium CH(NH2)2PbX3 (X = Cl, Br, I, or mixed Cl/Br and Br/I) colloidal nanocrystals by ligand-assisted reprecipitation (LARP). The cubic and platelet-like nanocrystals with their emission in the range of 415-740 nm, full width at half-maximum (fwhm) of 20-44 nm, and radiative lifetimes of 5-166 ns enable band gap tuning by halide composition as well as by their thickness tailoring; they have a high photoluminescence quantum yield (up to 85%), colloidal and thermodynamic stability. Combined with surface modification that prevents degradation by water, this nanocrystalline material is an ideal candidate for optoelectronic devices and applications. In addition, optoelectronic measurements verify that the photodetector based on FAPbI3 nanocrystals paves the way for perovskite quantum dot photovoltaics.

8.
ACS Appl Mater Interfaces ; 9(12): 10971-10982, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28263058

RESUMO

A novel main-chain polyfullerene, poly[fullerene-alt-2,5-bis(octyloxy)terephthalaldehyde] (PPC4), is investigated for its hypothesized superior morphological stability as an electron-accepting material in organic photovoltaics relative to the widely used fullerene phenyl-C61-butyric acid methyl ester (PCBM). When mixed with poly(3-hexylthiophene-2,5-diyl) (P3HT), PPC4 affords low-charge-generation yields because of poor intermixing within the blend. The adoption of a multiacceptor system, by introducing PCBM into the P3HT:polyfullerene blend, was found to lead to a 3-fold enhancement in charge generation, affording power conversion efficiencies very close to that of the prototypical P3HT:PCBM binary control. Upon thermal stressing and in contrast to the P3HT:PCBM binary, photovoltaic devices based on the multiacceptor system demonstrated significantly improved stability, outperforming the control because of suppression of the PCBM migration and aggregation processes responsible for rapid device failure. We rationalize the influence of the fullerene miscibility and its implications on the device performance in terms of a thermodynamic model based on Flory-Huggins solution theory. Finally, the potential universal applicability of this approach for thermal stabilization of organic solar cells is demonstrated, utilizing an alternative low-band-gap polymer-donor system.

9.
Nat Commun ; 8: 14541, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28224984

RESUMO

The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA