RESUMO
We aimed to analyze the seasonal acclimatization process of Nelore and Canchim cattle raised on two production systems (non-shaded, NS, and integrated crop-livestock-forest, ICLF), based on the dynamics of the morphological and functional attributes of the hair coat and skin during winter and summer. The study was conducted in Brazil, in a low-altitude tropical climate region. A completely randomized 2 × 2 factorial design was adopted as follows: two production systems (NS and ICLF), two breeds (Nelore and Canchim) in a longitudinal structure, with measurements repeated over time through two stations (winter and summer). The experimental animals consisted of 32 Nelore (Bos indicus) and 32 Canchim (5/8 Bos taurus × 3/8 Bos indicus) bulls. The animals were equally distributed between two intensive rotational grazing systems. In both breeds, the hair coat was significantly thicker in winter but longer in summer, which increased epidermal protection. The Nelore bulls had shorter, wider, and thicker hairs, which are attributes that promote heat loss via conduction. The Canchim bulls showed significantly lower hair density and higher epithelium distance to sweat glands, which resulted in higher core temperature and respiratory rate. In turn, Nelore bulls had higher serum concentrations of triiodothyronine and lower serum concentrations of cortisol. However, Canchim bulls more frequently and intensely activated their thermoregulatory system and markedly adjusted their hair coat and hair features to reduce heat gain, especially in summer. Therefore, the anatomical plasticity and functional integumentary characteristics of Nelore and Canchim bulls reflect their acclimatization to tropical conditions.
Assuntos
Estações do Ano , Clima Tropical , Animais , Bovinos , Brasil , Aclimatação/fisiologia , Masculino , Cabelo/fisiologia , Pelo AnimalRESUMO
Regularly weighing calves helps to assess the efficiency of the rearing period and contributes to animal welfare by allowing more precise feeding and medication application in dairy farming, but many farmers do not weigh their calves regularly. Improving the feasibility of this process is, therefore, important. The use of morphometric measurements has been used to estimate the weight of cattle. However, many studies have focused on adult animals or used a wide age range. As calves experience allometric tissue growth, specific models for certain ranges might be more accurate. Therefore, the aim of this work was to develop a weight estimation model specific for pre-weaned Holstein-Friesian calves using morphometric measurements and to compare the model with another equation previously validated for the same breed with young and adult animals. From four dairy farms, 237 measurements of body weight, heart girth, abdominal girth, hip height, withers height, and body length were taken from Holstein-Friesian male and female calves. Linear and non-linear regression analysis was used to test the relationship between body weight and morphometric measurements, with age, sex, and farm as possible explanatory variables. Selected models were compared with goodness of fit and agreement tests. The final model was able to accurately predict body weight (R2 = 0.96) with a mean difference of -1.4 ± 3.24 kg. Differences in the relationship between body weight and morphometric traits were observed between farms, but not between males and females. The genetics of the animal population at farm level may be responsible for this variability and further studies are needed to understand this variability and improve weight prediction models. The developed model was able to perform better in the agreement tests than the previously validated model for Holstein-Friesian animals, suggesting that different equations should be used depending on the growth phase the animal is in. In addition, a web application has been developed to facilitate the use of the developed model by farmers. This avoids the use of calibrated weight bands, which are usually calibrated for a broader age range or for beef cattle.
RESUMO
Colostrum contains macro- and micronutrients necessary to meet the nutritional and energy requirements of the neonatal calf, bioactive components that intervene in several physiological aspects, and cells and microorganisms that modulate the calf's immune system and gut microbiome. Colostrum is sometimes mistaken as transition milk, which, although more nutritive than whole milk, has a distinct biochemical composition. Furthermore, most research about colostrum quality and colostrum management focuses on the transfer of maternal IgG to the newborn calf. The remaining components of colostrum and transition milk have not received the same attention, despite their importance to the newborn animal. In this narrative review, a large body of literature on the components of bovine colostrum was reviewed. The variability of these components was summarized, emphasizing specific components that warrant deeper exploration. In addition, the effects of each component present in colostrum and transition milk on several key physiological aspects of the newborn calf are discussed.
RESUMO
Urease, a pivotal enzyme in nitrogen metabolism, plays a crucial role in various microorganisms, including the pathogenic Helicobacter pylori. Inhibiting urease activity offers a promising approach to combating infections and associated ailments, such as chronic kidney diseases and gastric cancer. However, identifying potent urease inhibitors remains challenging due to resistance issues that hinder traditional approaches. Recently, machine learning (ML)-based models have demonstrated the ability to predict the bioactivity of molecules rapidly and effectively. In this study, we present ML models designed to predict urease inhibitors by leveraging essential physicochemical properties. The methodological approach involved constructing a dataset of urease inhibitors through an extensive literature search. Subsequently, these inhibitors were characterized based on physicochemical properties calculations. An exploratory data analysis was then conducted to identify and analyze critical features. Ultimately, 252 classification models were trained, utilizing a combination of seven ML algorithms, three attribute selection methods, and six different strategies for categorizing inhibitory activity. The investigation unveiled discernible trends distinguishing urease inhibitors from non-inhibitors. This differentiation enabled the identification of essential features that are crucial for precise classification. Through a comprehensive comparison of ML algorithms, tree-based methods like random forest, decision tree, and XGBoost exhibited superior performance. Additionally, incorporating the "chemical family type" attribute significantly enhanced model accuracy. Strategies involving a gray-zone categorization demonstrated marked improvements in predictive precision. This research underscores the transformative potential of ML in predicting urease inhibitors. The meticulous methodology outlined herein offers actionable insights for developing robust predictive models within biochemical systems.
Assuntos
Inibidores Enzimáticos , Aprendizado de Máquina , Urease , Urease/antagonistas & inibidores , Urease/química , Urease/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Helicobacter pylori/enzimologia , Helicobacter pylori/efeitos dos fármacos , Algoritmos , HumanosRESUMO
Heat stress is a condition that can affect the health, performance, and welfare of farm animals. The perception of thermal stress leads to the activation of the autonomic nervous system to start a series of physiological and behavioral mechanisms to restore thermostability. One of these mechanisms is vasodilation of peripheral blood vessels to increase heat loss through the skin. Due to this aspect, infrared thermography has been suggested as a method to assess the thermal state of animals and predict rectal temperature values noninvasively. However, it is important to consider that predicting rectal temperature is challenging, and its association with IRT is not always a direct linear relationship. The present review aims to analyze the neurobiological response associated with heat stress and how thermal imaging in different thermal windows can be used to recognize heat stress in farmed ungulates.
RESUMO
There is compelling evidence that the quality of caregiver-child interactions during toddlerhood and the preschool years supports the development of executive function (EF) (Bernier et al., 2010; 2015; 2016; Fay-Stammbach et al., 2014; Geeraerts et al., 2021). Based on such findings, we make the case herein that sensitivity may be one of the most important dimensions of parenting contributing to early EF. In the present article, we will review empirical evidence, integrating findings from a wide range of scientific disciplines - cognitive psychology, neuroscience, and developmental psychopathology - and present theoretical ideas about how two contexts of sensitive caregiving - i.e. sensitivity to distress and non-distress cues - may be contributing differently to hot and cool EF development. Implications for future investigations on the environmental contributors of early EF, and its mechanisms, are discussed.
Assuntos
Função Executiva , Poder Familiar , Humanos , Pré-Escolar , Sinais (Psicologia)RESUMO
Water buffaloes have morphological and behavioral characteristics for efficient thermoregulation. However, their health, welfare, and productive performance can be affected by GW. The objective of this review was to analyze the adverse effects of GW on the productive behavior and health of water buffaloes. The physiological, morphological, and behavioral characteristics of the species were discussed to understand the impact of climate change and extreme meteorological events on buffaloes' thermoregulation. In addition, management strategies in buffalo farms, as well as the use of infrared thermography as a method to recognize heat stress in water buffaloes, were addressed. We concluded that heat stress causes a change in energy mobilization to restore animal homeostasis. Preventing hyperthermia limits the physiological, endocrine, and behavioral changes so that they return to thermoneutrality. The use of fans, sprinklers, foggers, and natural sources of water are appropriate additions to current buffalo facilities, and infrared thermography could be used to monitor the thermal states of water buffaloes.
RESUMO
Transport is a stressor that can cause physiological and metabolic imbalances in livestock, resulting in stress-induced hyperthermia. In water buffaloes, studies regarding the thermal state of animals during mobilization are scarce. Therefore, this study aimed to compare the thermal response of 1516 water buffaloes using infrared thermography (IRT) during 15 short trips (783 animals, 60,291 records, average duration = 50.33 min ± 5.48 min) and 14 long trips (733 animals, 56,441 records, average duration = 13.31 h ± 47.32 min). The surface temperature was assessed in 11 regions (periocular, lacrimal caruncle, nasal, lower eyelid, auricular, frontal-parietal, pelvic limb, torso, abdominal, lumbar, and thoracic) during seven phases from pasture to post-transport. It was found that the surface temperature of the periocular, lacrimal caruncle, nasal, auricular, frontal-parietal, pelvic limb, torso, abdominal, lumbar, and thoracic regions was significantly higher during SJs (+3 °C) when compared to LJs (p < 0.0001). In particular, the frontal-parietal region had a significant increase of 10 °C during the post-transport phase (p < 0.0001) in both groups, recording the highest temperatures during this phase. Likewise, a strong positive significant correlation between the different regions was found (r = 0.90, p < 0.0001). It is worth mentioning that the herding, loading, pre-, and post-transport phases were the ones where the greatest thermal response was recorded, possibly due to the influence of human interaction. Finally, a strong positive correlation (r above 0.9, p > 0.001) between the periocular, lacrimal caruncle, pinna, and pelvic limb was found. According to the results, SJ could be considered a stressful event that hinders thermal generation, contrarily to LJ.
RESUMO
Turn-transition timing in childhood has been examined by measuring response latency - that aggregates gap and overlap duration - in turn-transitions contingent to specific semantic categories. This contrasts with studies in infancy where the whole spectrum of temporal contingent vocalizations are examined, and gap and overlap duration is analyzed independently. We propose using the latter approach to investigate the continuities between infancy and childhood. In a cross-sectional design, we analyzed the vocalizations of 44 mother-child free-play interactions, ranging from three to five years of age. Frequency and duration were measured for gaps and overlaps, independently, and as an aggregated measure - floor-transfer offset (FTO). The effects of child's age and direction of turn-transition (child, mother) were assessed using generalized linear mixed modeling for each dependent variable (DV: FTO, gaps, overlaps). Although there was a slight increase in FTO and gap duration across ages, no significant effect of age was found for any of the DVs. There was an effect of turn-transition direction, for FTO and gap durations, but not for overlap duration. Specifically, mother-to-child turn-transitions produced significantly longer FTO and gap durations than child-to-mother turn-transitions, but had similarly timed overlaps. Results suggest that gaps and overlaps still have different developmental trajectories throughout childhood, and that overlap duration converges to adult standards, at least, by 3-years of age. Methodologically, we demonstrated the relevance of using complementary metrics (FTO, gap, overlap) to understand the developmental trajectories of turn-taking, and that examining all temporally contingent vocalizations can provide a valid and more inclusive measure of turn-transition duration in childhood.
Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Transmissão Vertical de Doenças Infecciosas , Adulto , Humanos , Feminino , Estudos Transversais , Tempo de ReaçãoRESUMO
Hypothermia is one of the principal causes of perinatal mortality in water buffaloes and can range from 3% to 17.9%. In ruminants, factors affecting hypothermia in newborns may be of intrinsic (e.g., level of neurodevelopment, birth weight, vitality score, amount of brown fat, skin features) or extrinsic origin (e.g., maternal care, environmental conditions, colostrum consumption). When newborn buffaloes are exposed to cold stress, thermoregulatory mechanisms such as peripheral vasoconstriction and shivering and non-shivering thermogenesis are activated to prevent hypothermia. Due to the properties of infrared thermography (IRT), as a technique that detects vasomotor changes triggered by a reduction in body temperature, evaluating the central and peripheral regions in newborn buffaloes is possible. This review aims to analyze behavioral, physiological, and morphological strategies and colostrum consumption as thermal compensation mechanisms in newborn water buffalo to cope with environmental changes affecting thermoneutrality. In addition, the importance of monitoring by IRT to identify hypothermia states will be highlighted. Going deeper into these topics related to the water buffalo is essential because, in recent years, this species has become more popular and is being bred in more geographic areas.
RESUMO
The caregiver's touch behavior during early infancy is linked to multiple developmental outcomes. However, social touch remains a challenging construct to operationalize, and although observational tools have been a gold standard for measuring touch in caregiver-infant interactions, no systematic review has been conducted before. We followed the PRISMA guidelines and reviewed the literature to describe and classify the main characteristics of the available observational instruments. Of the 3042 publications found, we selected 45 that included an observational measure, and from those we identified 12 instruments. Most of the studies were of infants younger than six months of age and assessed touch in two laboratory tasks: face-to-face interaction and still-face procedure. We identified three approaches for evaluating the caregiver's touch behavior: strictly behavioral (the observable touch behavior), functional (the functional role of the touch behavior), or mixed (a combination of the previous two). Half of the instruments were classified as functional, 25% as strictly observational, and 25% as mixed. The lack of conceptual and operational uniformity and consistency between instruments is discussed.
Assuntos
Cuidadores , Percepção do Tato , Humanos , Lactente , TatoRESUMO
Ecological and safe packaging solutions arise as pivotal points in the development of an integrated system for sustainable meat production. The aim of this study was to assess the effect of a combined chitosan (Ch) + green tea extract (GTE) + essential oil (thyme oil, TO; flaxseed oil, FO; or oregano oil, OO) coating on the safety and quality of vacuum-packaged beef during storage at 4 °C. An optimized bio-based coating formulation was selected (2% Ch + 2% GTE + 0.1% FO) to be applied to three fresh beef cuts (shoulder, Sh; knuckle, Kn; Striploin, St) based on its pH (5.8 ± 0.1), contact angle (22.3 ± 0.4°) and rheological parameters (viscosity = 0.05 Pa.s at shear rate > 20 s-1). Shelf-life analysis showed that the Ch-GTE-FO coating delayed lipid oxidation and reduced total viable counts (TVC) and Enterobacteriaceae growth compared with uncoated beef samples over five days. In addition, Ch-GTE-FO coating decreased total color changes of beef samples (e.g., ∆E* = 9.84 and 3.94, for non-coated and coated Kn samples, respectively) for up to five days. The original textural parameters (hardness, adhesiveness and springiness) of beef cuts were maintained during storage when Ch-GTE-FO coating was applied. Based on the physicochemical and microbial characterization results, the combination of the Ch-GTE-FO coating developed was effective in preserving the quality of fresh beef cuts during refrigerated storage along with vacuum packaging.
RESUMO
Precision livestock farming (PLF) research is rapidly increasing and has improved farmers' quality of life, animal welfare, and production efficiency. PLF research in dairy calves is still relatively recent but has grown in the last few years. Automatic milk feeding systems (AMFS) and 3D accelerometers have been the most extensively used technologies in dairy calves. However, other technologies have been emerging in dairy calves' research, such as infrared thermography (IRT), 3D cameras, ruminal bolus, and sound analysis systems, which have not been properly validated and reviewed in the scientific literature. Thus, with this review, we aimed to analyse the state-of-the-art of technological applications in calves, focusing on dairy calves. Most of the research is focused on technology to detect and predict calves' health problems and monitor pain indicators. Feeding and lying behaviours have sometimes been associated with health and welfare levels. However, a consensus opinion is still unclear since other factors, such as milk allowance, can affect these behaviours differently. Research that employed a multi-technology approach showed better results than research focusing on only a single technique. Integrating and automating different technologies with machine learning algorithms can offer more scientific knowledge and potentially help the farmers improve calves' health, performance, and welfare, if commercial applications are available, which, from the authors' knowledge, are not at the moment.
RESUMO
During the 1st days of life, water buffalo calves, especially those with low birth weight, are susceptible to hypothermic mortality due to scarce energy reserves provided by fats. This means that monitoring the thermal state of newborns is essential. The objectives of the present study were to apply infrared thermography (IRT) in 109 buffalo calves to detect differences in the surface temperatures of six thermal windows -lacrimal gland, lacrimal caruncle, periocular region, nostrils, ear canal, pelvic limbs-, and determine their association to birth weight during the first 6 days of life. The calves were divided into four categories according to their weight (Q1, 37.8-41.25 kg; Q2, 41.3-46.3 kg; Q3, 46.4-56.3 kg; Q4, 56.4-60.3 kg). The thermographic images were recorded in the morning and afternoon. Results showed that the animals in Q4 registered the highest temperatures in all the thermal windows, and that these were higher in the afternoon (p < 0.0001). When considering the thermal windows, those located in the facial region recorded the highest temperatures; in contrast, the temperatures at the pelvic limbs remained below the average values of the other windows (33.41 and 33.76°C in the morning and afternoon, respectively). According to these results, the birth weight of water buffaloes is a factor that alters their thermoregulation during the 1st days of life, a condition that can be partially compensated by colostrum intake to promote development of an efficient thermoregulatory mechanism in water buffalo calves.
RESUMO
In light of the growing bacterial resistance to antibiotics and in the absence of the development of new antimicrobial agents, numerous antimicrobial delivery systems over the past decades have been developed with the aim to provide new alternatives to the antimicrobial treatment of infections. However, there are few studies that focus on the development of a rational design that is accurate based on a set of theoretical-computational methods that permit the prediction and the understanding of hydrogels regarding their interaction with cationic antimicrobial peptides (cAMPs) as potential sustained and localized delivery nanoplatforms of cAMP. To this aim, we employed docking and Molecular Dynamics simulations (MDs) that allowed us to propose a rational selection of hydrogel candidates based on the propensity to form intermolecular interactions with two types of cAMPs (MP-L and NCP-3a). For the design of the hydrogels, specific building blocks were considered, named monomers (MN), co-monomers (CM), and cross-linkers (CL). These building blocks were ranked by considering the interaction with two peptides (MP-L and NCP-3a) as receptors. The better proposed hydrogel candidates were composed of MN3-CM7-CL1 and MN4-CM5-CL1 termed HG1 and HG2, respectively. The results obtained by MDs show that the biggest differences between the hydrogels are in the CM, where HG2 has two carboxylic acids that allow the forming of greater amounts of hydrogen bonds (HBs) and salt bridges (SBs) with both cAMPs. Therefore, using theoretical-computational methods allowed for the obtaining of the best virtual hydrogel candidates according to affinity with the specific cAMP. In conclusion, this study showed that HG2 is the better candidate for future in vitro or in vivo experiments due to its possible capacity as a depot system and its potential sustained and localized delivery system of cAMP.
RESUMO
The Kirsten rat sarcoma viral oncogene (KRAS) is one of the most well-known proto-oncogenes, frequently mutated in pancreatic and colorectal cancers, among others. We hypothesized that the intracellular delivery of anti-KRAS antibodies (KRAS-Ab) with biodegradable polymeric micelles (PM) would block the overactivation of the KRAS-associated cascades and revert the effect of its mutation. To this end, PM-containing KRAS-Ab (PM-KRAS) were obtained using Pluronic F127. The feasibility of using PM for antibody encapsulation as well as the conformational change of the polymer and its intermolecular interactions with the antibodies was studied, for the first time, using in silico modeling. In vitro, encapsulation of KRAS-Ab allowed their intracellular delivery in different pancreatic and colorectal cancer cell lines. Interestingly, PM-KRAS promoted a high proliferation impairment in regular cultures of KRAS-mutated HCT116 and MIA PaCa-2 cells, whereas the effect was neglectable in non-mutated or KRAS-independent HCT-8 and PANC-1 cancer cells, respectively. Additionally, PM-KRAS induced a remarkable inhibition of the colony formation ability in low-attachment conditions in KRAS-mutated cells. In vivo, when compared with the vehicle, the intravenous administration of PM-KRAS significantly reduced tumor volume growth in HCT116 subcutaneous tumor-bearing mice. Analysis of the KRAS-mediated cascade in cell cultures and tumor samples showed that the effect of PM-KRAS was mediated by a significant reduction of the ERK phosphorylation and a decrease in expression in the stemness-related genes. Altogether, these results unprecedently demonstrate that the delivery of KRAS-Ab mediated by PM can safely and effectively reduce the tumorigenicity and the stemness properties of KRAS-dependent cells, thus bringing up new possibilities to reach undruggable intracellular targets.
Assuntos
Neoplasias Colorretais , Neoplasias , Animais , Camundongos , Carcinogênese , Proliferação de Células , Neoplasias Colorretais/patologia , Micelas , Mutação , Polímeros/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/farmacologia , Espaço IntracelularRESUMO
The frequency of heat waves has increased over the last years, with an impact on animal production and health, including the death of animals. Therefore, the aim of this study was to evaluate the dynamics of thermoregulation and hormonal responses in non-pregnant and pregnant ewes exposed to successive heat waves. Twenty-four non-pregnant and 18 pregnant Santa Ines ewes with black coat color (live weight: 55 ± 9.03 kg; age: 60 months) were used. Weather variables such air temperature, relative humidity, and solar radiation were continuously recorded. The rectal and tympanic temperatures and respiratory rate were measured daily. Serum triiodothyronine (T3) and prolactin were evaluated during the heat wave and thermoneutral periods. The physiological variables were higher under the heat wave conditions and were related to the activation of the thermoregulatory system for maintaining homeothermy (P < 0.05). The core body temperature was higher during successive heat waves (P < 0.05), as was the tympanic temperature, which are both affected by changes in air temperature (P < 0.05). T3 and prolactin levels were not inï¬uenced by successive heat waves (P < 0.05) and rectal temperature and respiratory rate were highest in non-pregnant ewes (P < 0.05). Prolactin was not affected by temperature. The results indicate that the Santa Ines breed overcomes the thermal challenge during a heat wave without showing severe signs of thermal stress regardless of being pregnant or not.
Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Ovinos , Animais , Feminino , Temperatura Corporal , Tempo (Meteorologia) , TemperaturaRESUMO
The new science called Sentiomics aims to identify the dynamic patterns that endow living systems with the capacity to feel and become conscious. One of the most promising fields of investigation in Sentiomics is the development and 'education' of human brain organoids to become sentient and useful for the promotion of human health in the (also new) field of Regenerative Neuromedicine. Here, we discuss the type of informational-rich input necessary to make a brain organoid sentient in experimental settings. Combining this research with the ecological preoccupation of preserving ways of sentience in the Amazon Rainforest, we also envisage the development of a new generation of biosensors to capture dynamic patterns from the forest, and use them in the 'education' of brain organoids to afford them a 'mental health' quality that is likely to be important in future advances in 'post-humanist' procedures in regenerative medicine. This study is closely related to the psychophysical approach to human mental health therapy, in which we have proposed the use of dynamic patterns in electric and magnetic brain stimulation protocols, addressing electrochemical waves in neuro-astroglial networks.
RESUMO
Specific anatomical characteristics make the porcine species especially sensitive to extreme temperature changes, predisposing them to pathologies and even death due to thermal stress. Interest in improving animal welfare and porcine productivity has led to the development of various lines of research that seek to understand the effect of certain environmental conditions on productivity and the impact of implementing strategies designed to mitigate adverse effects. The non-invasive infrared thermography technique is one of the tools most widely used to carry out these studies, based on detecting changes in microcirculation. However, evaluations using this tool require reliable thermal windows; this can be challenging because several factors can affect the sensitivity and specificity of the regions selected. This review discusses the thermal windows used with domestic pigs and the association of thermal changes in these regions with the thermoregulatory capacity of piglets and hogs.
RESUMO
Hypothermia, a factor associated with neonatal mortality, can occur immediately after birth as a protective mechanism to prevent hypoxic damage in neonates, or to reduce the metabolic rate to improve the chances of survival in the first hours of life. The heat interchange through the superficial temperature of animals can be evaluated with infrared thermography (IRT). However, to date, there is no information on thermal windows in puppies. This study aimed to evaluate, with the use of IRT, the microcirculatory alterations in 8 different thermal windows identified at 7 different times in 289 newborn puppies assigned to different groups. Three thermograms were taken from four zones of each puppy: the facial, frontal, right lateral, and left lateral regions. Newborn puppies were grouped in 4 quartiles according to their weight: Q1 (126−226 g) n = 73, Q2 (227−330 g) n = 72, Q3 (331−387 g) n = 74, and Q4 (388−452 g) n = 70. A total of 8 thermal windows were considered at 7 evaluation times from Wet at birth until 24 h after birth (AB). Two-way mixed ANOVA within and between subjects' design for each thermal window (eight models) was performed. Results revealed a positive correlation between the puppy's weight and its ability to achieve thermostability in all the evaluated thermal windows. Statistically significant differences (p < 0.0001) between the 4 quartiles (Q1, Q2, Q3, and Q4) were found. The lowest temperatures were recorded when the pups were still wet and the highest at 24 h AB. Thermal windows with the highest temperatures were abdominal (34.234 ± 0.056 °C), thoracic (33.705 ± 0.049 °C), nasal (30.671 ± 0.110 °C), and upper left palpebral (34.066 ± 0.052 °C), while the lowest were thoracic limb brachial biceps (27.534 ± 0.051 °C), thoracic limb elbow (27.141 ± 0.049 °C), thoracic limb metacarpal (27.024 ± 0.062 °C), and femoral pelvic limb (27.654 ± 0.055 °C). Assessing the thermal response in newborn puppies can help identify drastic temperature reductions or deficient thermoregulatory compensation during the first hours of life, preventing the consequences of hypothermia.