Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 2(2): 167-178, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32617517

RESUMO

The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards fatty-acid utilization. Despite the energy advantage of fatty-acid beta-oxidation, cardiac mitochondria produce elevated rates of reactive oxygen species when utilizing fatty acids, which is thought to play a role in cardiomyocyte cell-cycle arrest through induction of DNA damage and activation of DNA-damage response (DDR) pathway. Here we show that inhibiting fatty-acid utilization promotes cardiomyocyte proliferation in the postnatatal heart. First, neonatal mice fed fatty-acid deficient milk showed prolongation of the postnatal cardiomyocyte proliferative window, however cell cycle arrest eventually ensued. Next, we generated a tamoxifen-inducible cardiomyocyte-specific, pyruvate dehydrogenase kinase 4 (PDK4) knockout mouse model to selectively enhance oxidation of glycolytically derived pyruvate in cardiomyocytes. Conditional PDK4 deletion resulted in an increase in pyruvate dehydrogenase activity and consequently an increase in glucose relative to fatty-acid oxidation. Loss of PDK4 also resulted in decreased cardiomyocyte size, decreased DNA damage and expression of DDR markers and an increase in cardiomyocyte proliferation. Following myocardial infarction, inducible deletion of PDK4 improved left ventricular function and decreased remodelling. Collectively, inhibition of fatty-acid utilization in cardiomyocytes promotes proliferation, and may be a viable target for cardiac regenerative therapies.


Assuntos
Ciclo Celular , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/citologia , Animais , Dano ao DNA , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Curr Cardiol Rep ; 22(5): 33, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32333123

RESUMO

PURPOSE OF REVIEW: This review provides an overview of the molecular mechanisms underpinning the cardiac regenerative capacity during the neonatal period and the potential targets for developing novel therapies to restore myocardial loss. RECENT FINDINGS: We present recent advances in the understanding of the molecular mechanisms of neonatal cardiac regeneration and the implications for the development of new cardiac regenerative therapies. During the early postnatal period, several cell types and pathways are involved in cardiomyocyte proliferation including immune response, nerve signaling, extracellular matrix, mitochondria substrate utilization, gene expression, miRNAs, and cell cycle progression. The early neonatal mammalian heart has remarkable regenerative capacity, which is mediated by proliferation of endogenous cardiomyocytes, and is lost when cardiomyocytes stop dividing shortly after birth. A wide array of mechanisms that regulate this regenerative process have been proposed.


Assuntos
Proliferação de Células/fisiologia , Coração , Miócitos Cardíacos/fisiologia , Regeneração/fisiologia , Medicina Regenerativa/tendências , Humanos , Recém-Nascido , Miocárdio , Medicina Regenerativa/métodos , Transdução de Sinais
3.
EBioMedicine ; 51: 102571, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31911274

RESUMO

BACKGROUND: A pathophysiological link exists between dysregulation of MEF2C transcription factors and heart failure (HF), but the underlying mechanisms remain elusive. Alternative splicing of MEF2C exons α, ß and γ provides transcript diversity with gene activation or repression functionalities. METHODS: Neonatal and adult rat ventricular myocytes were used to overexpress MEF2C splicing variants γ+ (repressor) or γ-, or the inactive MEF2Cγ+23/24 (K23T/R24L). Phenotypic alterations in cardiomyocytes were determined by confocal and electron microscopy, flow cytometry and DNA microarray. We used transgenic mice with cardiac-specific overexpression of MEF2Cγ+ or MEF2Cγ- to explore the impact of MEF2C variants in cardiac phenotype. Samples of non-infarcted areas of the left ventricle from patients and mouse model of myocardial infarction were used to detect the expression of MEF2Cγ+ in failing hearts. FINDINGS: We demonstrate a previously unrealized upregulation of the transrepressor MEF2Cγ+ isoform in human and mouse failing hearts. We show that adenovirus-mediated overexpression of MEF2Cγ+ downregulates multiple MEF2-target genes, and drives incomplete cell-cycle reentry, partial dedifferentiation and apoptosis in the neonatal and adult rat. None of these changes was observed in cardiomyocytes overexpressing MEF2Cγ-. Transgenic mice overexpressing MEF2Cγ+, but not the MEF2Cγ-, developed dilated cardiomyopathy, correlated to cell-cycle reentry and apoptosis of cardiomyocytes. INTERPRETATION: Our results provide a mechanistic link between MEF2Cγ+ and deleterious abnormalities in cardiomyocytes, supporting the notion that splicing dysregulation in MEF2C towards the selection of the MEF2Cγ+ variant contributes to the pathogenesis of HF by promoting cardiomyocyte dropout. FUNDING: São Paulo Research Foundation (FAPESP); Brazilian National Research Council (CNPq).


Assuntos
Ciclo Celular/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Processamento Alternativo , Animais , Apoptose/genética , Modelos Animais de Doenças , Estudos de Associação Genética , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Humanos , Fatores de Transcrição MEF2/genética , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Ratos
6.
Nat Commun ; 5: 5159, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25319025

RESUMO

Focal adhesion kinase (FAK) contributes to cellular homeostasis under stress conditions. Here we show that αB-crystallin interacts with and confers protection to FAK against calpain-mediated proteolysis in cardiomyocytes. A hydrophobic patch mapped between helices 1 and 4 of the FAK FAT domain was found to bind to the ß4-ß8 groove of αB-crystallin. Such an interaction requires FAK tyrosine 925 and is enhanced following its phosphorylation by Src, which occurs upon FAK stimulation. αB-crystallin silencing results in calpain-dependent FAK depletion and in the increased apoptosis of cardiomyocytes in response to mechanical stress. FAK overexpression protects cardiomyocytes depleted of αB-crystallin against the stretch-induced apoptosis. Consistently, load-induced apoptosis is blunted in the hearts from cardiac-specific FAK transgenic mice transiently depleted of αB-crystallin by RNA interference. These studies define a role for αB-crystallin in controlling FAK function and cardiomyocyte survival through the prevention of calpain-mediated degradation of FAK.


Assuntos
Calpaína/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Enzimológica da Expressão Gênica , Miócitos Cardíacos/citologia , Cadeia B de alfa-Cristalina/química , Animais , Aorta/metabolismo , Apoptose , Sobrevivência Celular , Transferência Ressonante de Energia de Fluorescência , Inativação Gênica , Homeostase , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Modelos Moleculares , Miocárdio/metabolismo , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Estresse Mecânico , Quinases da Família src/metabolismo
7.
PLoS One ; 4(12): e8472, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20041152

RESUMO

BACKGROUND: The activation of the members of the myocyte enhancer factor-2 family (MEF2A, B, C and D) of transcription factors promotes cardiac hypertrophy and failure. However, the role of its individual components in the pathogenesis of cardiac hypertrophy remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated whether MEF2C plays a role in mediating the left ventricular hypertrophy by pressure overload in mice. The knockdown of myocardial MEF2C induced by specific small interfering RNA (siRNA) has been shown to attenuate hypertrophy, interstitial fibrosis and the rise of ANP levels in aortic banded mice. We detected that the depletion of MEF2C also results in lowered levels of both PGC-1alpha and mitochondrial DNA in the overloaded left ventricle, associated with enhanced AMP:ATP ratio. Additionally, MEF2C depletion was accompanied by defective activation of S6K in response to pressure overload. Treatment with the amino acid leucine stimulated S6K and suppressed the attenuation of left ventricular hypertrophy and fibrosis in the aforementioned aortic banded mice. CONCLUSION/SIGNIFICANCE: These findings represent new evidences that MEF2C depletion attenuates the hypertrophic responses to mechanical stress and highlight the potential of MEF2C to be a target for new therapies to cardiac hypertrophy and failure.


Assuntos
Inativação Gênica , Hipertrofia Ventricular Esquerda/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Regulação Miogênica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , DNA Mitocondrial/genética , Hemodinâmica , Hipertrofia Ventricular Esquerda/fisiopatologia , Fatores de Transcrição MEF2 , Camundongos , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Regulação Miogênica/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Serina-Treonina Quinases TOR , Pressão Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA