Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Total Environ ; 833: 155211, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421466

RESUMO

Snail's embryotoxicity test is a suitable approach for toxicity assay of traditional and emerging pollutants, environmental risk assessment, as well as screening and development of new molluscicides. Among the snail species, Biomphalaria spp. has been indicated as a promising model system for developing standardized test protocols for assessing the chemical toxicity using early developmental stages. Thus, the current study aimed to review the data available in the scientific literature concerning the experimental approach, type of chemicals and the response of multiple biomarkers (survival, hatching rate, development delays, morphological and behavior changes) in snail embryos applied in toxicity tests. Revised data showed that the use of Biomphalaria embryos to assess chemical toxicity began in 1962. Snail's embryotoxicity test was applied mainly for analyzing the toxicity and development of new molluscicides, while its use in ecotoxicological studies is emerging. Biomphalaria glabrata was the main species analyzed. Embryos exposed to chemicals showed bioaccumulation, mortality, hatching inhibition, development delays, and morphological malformations, which were classified into four categories (hydropic, shell, cephalic and unspecified malformations). Besides, research gaps and recommendations for future research are indicated. Overall, the results showed that the Biomphalaria embryotoxicity test (BET) is a suitable tool for toxicity and health risk assessment.


Assuntos
Biomphalaria , Moluscocidas , Animais , Ecotoxicologia , Moluscocidas/toxicidade , Caramujos , Testes de Toxicidade
2.
Sci Total Environ, v. 833, 155211, ago. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4381

RESUMO

Snail's embryotoxicity test is a suitable approach for toxicity assay of traditional and emerging pollutants, environmental risk assessment, as well as screening and development of new molluscicides. Among the snail species, Biomphalaria spp. has been indicated as a promising model system for developing standardized test protocols for assessing the chemical toxicity using early developmental stages. Thus, the current study aimed to review the data available in the scientific literature concerning the experimental approach, type of chemicals and the response of multiple biomarkers (survival, hatching rate, development delays, morphological and behavior changes) in snail embryos applied in toxicity tests. Revised data showed that the use of Biomphalaria embryos to assess chemical toxicity began in 1962. Snail's embryotoxicity test was applied mainly for analyzing the toxicity and development of new molluscicides, while its use in ecotoxicological studies is emerging. Biomphalaria glabrata was the main species analyzed. Embryos exposed to chemicals showed bioaccumulation, mortality, hatching inhibition, development delays, and morphological malformations, which were classified into four categories (hydropic, shell, cephalic and unspecified malformations). Besides, research gaps and recommendations for future research are indicated. Overall, the results showed that the Biomphalaria embryotoxicity test (BET) is a suitable tool for toxicity and health risk assessment.

3.
Sci. Total Environ, v. 833, 155211, abr. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4304

RESUMO

Snail's embryotoxicity test is a suitable approach for toxicity assay of traditional and emerging pollutants, environmental risk assessment, as well as screening and development of new molluscicides. Among the snail species, Biomphalaria spp. has been indicated as a promising model system for developing standardized test protocols for assessing the chemical toxicity using early developmental stages. Thus, the current study aimed to review the data available in the scientific literature concerning the experimental approach, type of chemicals and the response of multiple biomarkers (survival, hatching rate, development delays, morphological and behavior changes) in snail embryos applied in toxicity tests. Revised data showed that the use of Biomphalaria embryos to assess chemical toxicity began in 1962. Snail's embryotoxicity test was applied mainly for analyzing the toxicity and development of new molluscicides, while its use in ecotoxicological studies is emerging. Biomphalaria glabrata was the main species analyzed. Embryos exposed to chemicals showed bioaccumulation, mortality, hatching inhibition, development delays, and morphological malformations, which were classified into four categories (hydropic, shell, cephalic and unspecified malformations). Besides, research gaps and recommendations for future research are indicated. Overall, the results showed that the Biomphalaria embryotoxicity test (BET) is a suitable tool for toxicity and health risk assessment.

4.
Chemosphere ; 254: 126792, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957266

RESUMO

Iron oxide nanoparticles (IONPs) are used in several medical and environmental applications, but their mechanism of action and hazardous effects to early developmental stages of fish remain unknown. Thus, the present study aimed to assess the developmental toxicity of citrate-functionalized IONPs (γ-Fe2O3 NPs), in comparison with its dissolved counterpart, in zebrafish (Danio rerio) after static and semi-static exposure. Embryos were exposed to environmental concentrations of both iron forms (0.3, 0.6, 1.25, 2.5, 5 and 10 mg L-1) during 144 h, jointly with negative control group. The interaction and distribution of both Fe forms on the external chorion and larvae surface were measured, following by multiple biomarker assessment (mortality, hatching rate, neurotoxicity, cardiotoxicity, morphological alterations and 12 morphometrics parameters). Results showed that IONPs were mainly accumulated on the zebrafish chorion, and in the digestive system and liver of the larvae. Although the IONPs induced low embryotoxicity compared to iron ions in both exposure conditions, these nanomaterials induced sublethal effects, mainly cardiotoxic effects (reduced heartbeat, blood accumulation in the heart and pericardial edema). The semi-static exposure to both iron forms induced high embryotoxicity compared to static exposure, indicating that the nanotoxicity to early developmental stages of fish depends on the exposure system. This is the first study concerning the role of the exposure condition on the developmental toxicity of IONPs on fish species.


Assuntos
Compostos Férricos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cloretos , Embrião não Mamífero/efeitos dos fármacos , Ferro/farmacologia , Larva/efeitos dos fármacos , Nanopartículas/toxicidade , Peixe-Zebra/embriologia
5.
Sci Total Environ ; 735: 139036, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32493656

RESUMO

Effluent from wastewater treatment plants (WWTPs) remains one of the major pollutants of aquatic environments; however, knowledge about its ecotoxic effects at fish early life stages is limited. The ecotoxicity of effluent from Brazilian WWTPs was herein analyzed based on responses of multiple biomarkers in the zebrafish embryotoxicity test (ZET). Ecotoxicity was analyzed based on mortality rate, hatching rate, spontaneous movement rate (neurotoxicity), heart rate (cardiotoxicity), frequency of morphological changes and morphometric parameters during 144 h exposure time. Results showed that embryos exposed to affluent and effluent presented high mortality rate and delayed hatching rate, as well as changes in morphometric parameters. Exposed embryos also showed physiological, sensory, skeletal and muscular changes, which confirms that the ecotoxic effect of WWTPs effluent is systemic and associated with the presence of several pollutants, even at low concentrations (mixture toxicity). The present study is pioneer in using responses of multiple biomarkers in ZET as suitable approach to assess the ecotoxicity of WWTPs effluent in developing countries, as well as to add value and contribute to studies on WWTPs worldwide. Zebrafish is a suitable vertebrate model to assess the ecotoxicity of WWTP effluent.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Biomarcadores , Brasil , Peixe-Zebra
6.
Sci Total Environ ; 700: 134867, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31706091

RESUMO

Different studies have reported the ecotoxicological effects of polyethylene microplastics (PE MPs) on aquatic organisms; however, little is known about their toxicity in the early life stages of aquatic vertebrates living in freshwater ecosystems. Thus, the aim of the current study is to evaluate the toxicity of PE MPs throughout the development of Danio rerio after their static and semi-static exposure to different concentrations of these pollutants (6.2, 12.5, 25, 50 and 100 mg/L) - models were monitored at different time-periods, namely: 24, 48, 72, 96, 120 and 144 h. Based on the collected data, small PE MP concentrations have harmful effects on D. rerio embryos and larvae; the magnitude and characteristics of these effects depend on the adopted exposure system, which can be static or semi-static. PE MPs had negative effect on embryos' hatching rate in both exposure systems. However, the early hatching observed during the exposure through the static system could explain the lower larval survival rate after egg hatching. Nevertheless, PE MPs induced significant changes in various morphometric parameters. The present study is the first to assess the addressed topic; therefore, it is recommended to carry out future investigations to broaden the knowledge about PE MP toxicity.


Assuntos
Microplásticos/toxicidade , Polietileno/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Embrião não Mamífero , Peixe-Zebra/embriologia
7.
Environ Pollut ; 252(Pt B): 1841-1853, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31325757

RESUMO

Nanotechnology and use of nanomaterials (NMs) improve life quality, economic growth and environmental health. However, the increasing production and use of NMs in commercial products has led to concerns about their potential toxicity on human and environment health, as well as its toxicological classification and regulation. In this context, there is an urgent need to standardize and validate procedures for nanotoxicity testing. Since the zebrafish embryotoxicity test (ZET) has been indicated as a suitable approach for the toxicity assessment of traditional and emergent pollutants, the aim of this review is to summarize the existing literature on embryotoxic and teratogenic effects of NMs on zebrafish. In addition, morphological changes in zebrafish embryos induced by NMs were classified in four reaction models, allowing classification of the mode of action and toxicity of different types of NM. Revised data showed that the interaction and bioaccumulation of NMs on zebrafish embryos were associated to several toxic effects, while the detoxification process was limited. In general, NMs induced delayed hatching, circulatory changes, pigmentation and tegumentary alterations, musculoskeletal disorders and yolk sac alterations on zebrafish embryos. Recommendations for nanotoxicological tests are given, including guidance for future research. This review reinforces the use of the ZET as a suitable approach to assess the health risks of NM exposure.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Teratogênicos/toxicidade , Testes de Toxicidade/métodos , Peixe-Zebra/embriologia , Animais , Humanos , Projetos de Pesquisa , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA