Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; : 114390, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950716

RESUMO

The current pharmacological management of androgenetic alopecia is inconvenient and requires a discipline that patients find difficult to follow. This reduces compliance with treatment and satisfaction with results. It is important to propose treatment regimens that increase patient compliance and reduce adverse effects. This work describes transdermal delivery of minoxidil partially encapsulated in ß-cyclodextrin and assisted by photoacoustic waves. Photoacoustic waves transiently increase the permeability of the skin and allow for the delivery of encapsulated minoxidil. A minoxidil gel formulation was developed and the transdermal delivery was studied in vitro in the presence and absence of photoacoustic waves. A 5-min stimulus with photoacoustic waves generated by light-to-pressure transducers increases minoxidil transdermal delivery flux by approximately 3-fold. The flux of a 1% minoxidil formulation promoted by photoacoustic waves is similar to the passive flux of a 2% minoxidil commercial formulation. Release of minoxidil from ß-cyclodextrin increases dermal exposure without increasing peak systemic exposure. This promotes hair growth with fewer treatments and reduced adverse effects. In vivo studies using encapsulated minoxidil and photoacoustic waves yielded 86% hair coat recovery (vs. 29% in the control group) and no changes in the blood pressure.

2.
Sci Rep ; 13(1): 11667, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468749

RESUMO

Photodynamic therapy (PDT) with redaporfin stimulates colon carcinoma (CT26), breast (4T1) and melanoma (B16F10) cells to display high levels of CD80 molecules on their surfaces. CD80 overexpression amplifies immunogenicity because it increases same cell (cis) CD80:PD-L1 interactions, which (i) disrupt binding of T-cells PD-1 inhibitory receptors with their ligands (PD-L1) in tumour cells, and (ii) inhibit CTLA-4 inhibitory receptors binding to CD80 in tumour cells. In some cancer cells, redaporfin-PDT also increases CTLA-4 and PD-L1 expressions and virtuous combinations between PDT and immune-checkpoint blockers (ICB) depend on CD80/PD-L1 or CD80/CTLA-4 tumour overexpression ratios post-PDT. This was confirmed using anti-CTLA-4 + PDT combinations to increase survival of mice bearing CT26 tumours, and to regress lung metastases observed with bioluminescence in mice with orthotopic 4T1 tumours. However, the primary 4T1 responded poorly to treatments. Photoacoustic imaging revealed low infiltration of redaporfin in the tumour. Priming the primary tumour with high-intensity (~ 60 bar) photoacoustic waves generated with nanosecond-pulsed lasers and light-to-pressure transducers improved the response of 4T1 tumours to PDT. Penetration-resistant tumours require a combination of approaches to respond to treatments: tumour priming to facilitate drug infiltration, PDT for a strong local effect and a change in immunogenicity, and immunotherapy for a systemic effect.


Assuntos
Fotoquimioterapia , Porfirinas , Camundongos , Animais , Inibidores de Checkpoint Imunológico , Antígeno B7-H1/metabolismo , Antígenos de Neoplasias , Antígeno B7-1
3.
Sci Rep ; 11(1): 2775, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531539

RESUMO

Target delivery of large foreign materials to cells requires transient permeabilization of the cell membrane without toxicity. Giant unilamellar vesicles (GUVs) mimic the phospholipid bilayer of the cell membrane and are also useful drug delivery vehicles. Controlled increase of the permeability of GUVs is a delicate balance between sufficient perturbation for the delivery of the GUV contents and damage to the vesicles. Here we show that photoacoustic waves can promote the release of FITC-dextran or GFP from GUVs without damage. Real-time interferometric imaging offers the first movies of photoacoustic wave propagation and interaction with GUVs. The photoacoustic waves are seen as mostly compressive half-cycle pulses with peak pressures of ~ 1 MPa and spatial extent FWHM ~ 36 µm. At a repetition rate of 10 Hz, they enable the release of 25% of the FITC-dextran content of GUVs in 15 min. Such photoacoustic waves may enable non-invasive targeted release of GUVs and cell transfection over large volumes of tissues in just a few minutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA