Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36977004

RESUMO

Nanotechnology-based strategies have played a pivotal role in innovative products in different technological fields, including medicine, agriculture, and engineering. The redesign of the nanometric scale has improved drug targeting and delivery, diagnosis, water treatment, and analytical methods. Although efficiency brings benefits, toxicity in organisms and the environment is a concern, particularly in light of global climate change and plastic disposal in the environment. Therefore, to measure such effects, alternative models enable the assessment of impacts on both functional properties and toxicity. Caenorhabditis elegans is a nematode model that poses valuable advantages such as transparency, sensibility in responding to exogenous compounds, fast response to perturbations besides the possibility to replicate human disease through transgenics. Herein, we discuss the applications of C. elegans to nanomaterial safety and efficacy evaluations from one health perspective. We also highlight the directions for developing appropriate techniques to safely adopt magnetic and organic nanoparticles, and carbon nanosystems. A description was given of the specifics of targeting and treatment, especially for health purposes. Finally, we discuss C. elegans potential for studying the impacts caused by nanopesticides and nanoplastics as emerging contaminants, pointing out gaps in environmental studies related to toxicity, analytical methods, and future directions.

2.
Nat Nanotechnol ; 17(4): 408-416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288671

RESUMO

Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane-electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Elétrons , Óptica e Fotônica , Fótons
3.
Environ Monit Assess ; 193(5): 297, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33893885

RESUMO

A fast, efficient, and non-chromatographic method was presented in this study for nitrite, nitrate, and p-nitrophenol (N-compounds) extraction and speciation analysis of environmental samples. By applying ultrasound-assisted solid-liquid extraction (USLE), analytes were efficiently extracted from water, soil, or sediment collected in areas of environmental disaster. These analytes were selectively converted to NO(g) through UV photolysis (NO3-), H2O2/UV photocatalysis (PNP), and direct conversion (NO2-). Following conversion, NO(g) was separated from the liquid phase and determined by high-resolution continuum source molecular absorption spectrometry (HR-CS MAS). The LODs obtained were 0.097 ± 0.004 mg L-1 for nitrite, 0.119 ± 0.004 mg L-1 for nitrate, and 0.090 ± 0.006 mg L-1 for p-nitrophenol. On applying this speciation method to environmental samples, concentrations were found to be up to 0.99 ± 0.03 mg L-1 (NO2-), 49.80 ± 2.5 mg L-1 (NO3-), and 0.10 ± 0.02 mg L-1 (PNP). Finally, addition/recovery study of real water, soil, and sediment samples showed 101 ± 2% recovery for NO2-, 100 ± 1% for NO3-, and 96 ± 5% for PNP.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Peróxido de Hidrogênio , Nitratos/análise , Nitritos/análise , Extração em Fase Sólida , Poluentes Químicos da Água/análise
4.
Environ Technol ; 41(2): 141-152, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29924692

RESUMO

Photocatalysis over TiO2 substrates is widely used in effluent treatment specially for organic compounds and for inactivation of pathogenic microorganisms. In the present work, TiO2 coatings were synthesized by plasma electrolytic oxidation (PEO) and its pathogenic bacteria inhibitory photoactivity was investigated. The photocatalytic activity of TiO2 coatings was investigated for the inactivation of Staphylococcus aureus and Salmonella bongori and the results were correlated with pore diameter and crystallite size. It was observed that both morphology and microstructure have an important role in the antibacterial photoactivity. The results show the larger the crystallite size and pore diameter the greater the photoactivity of the material. Porous materials that have a smaller pore diameter than the microorganism to be inactivated have low photoactivity. On the other hand, films that have pores with a diameter of the order or larger than the size of the microorganism to be inactivated present greater photocatalytic activity, once its pores allow the entrance and internal adsorption of the microorganisms, leading to the rupture of the cell membrane. Thus, in order to not sub-utilize the photocatalysts surface area, TiO2 coatings for using in microorganism inactivation must be synthesized with pore diameter bigger than the size of the microorganism.


Assuntos
Staphylococcus aureus , Titânio , Catálise , Oxirredução , Porosidade
5.
Mikrochim Acta ; 185(1): 12, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29594601

RESUMO

A glassy carbon electrode (GCE) was modified with multi-walled carbon nanotubes (MWCNT) and silver nanoparticles (AgNPs) and applied to the simultaneous determination of hydroquinone (HQ), catechol (CC), bisphenol A (BPA) and phenol by using square-wave voltammetry. The MWCNTs were deposited on the GCE and the AgNPs were then electrodeposited onto the MWCNT/GCE by the application of 10 potential sweep cycles using an AgNP colloidal suspension. The modified GCE was characterized by using SEM, which confirmed the presence of the AgNPs. The electrochemical behavior of the material was evaluated by using cyclic voltammetry, and by electrochemical impedance spectroscopy that employed hexacyanoferrate as an electrochemical probe. The results were compared to the performance of the unmodified GCE. The modified electrode has a lower charge-transfer resistance and yields an increased signal. The peaks for HQ (0.30 V), CC (0.40 V), BPA (0.74 V) and phenol (0.83 V; all versus Ag/AgCl) are well separated under optimized conditions, which facilitates their simultaneous determination. The oxidation current increases linearly with the concentrations of HQ, CC, BPA and phenol. Detection limits are in the order of 1 µM for all 4 species, and the sensor is highly stable and reproducible. The electrode was successfully employed with the simultaneous determination of HQ, CC, BPA and phenol in spiked tap water samples. Graphical abstract A glassy carbon electrode was modified with carbon nanotubes and silver nanoparticles and then successfully applied to the simultaneous determination of four phenolic compounds. The sensor showed high sensitivity in the detection of hydroquinone, catechol, bisphenol A and phenol in water samples.


Assuntos
Eletroquímica/métodos , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Fenóis/análise , Prata/química , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Catecóis/análise , Catecóis/química , Eletroquímica/instrumentação , Eletrodos , Hidroquinonas/análise , Hidroquinonas/química , Fenol/análise , Fenol/química , Fenóis/química , Fatores de Tempo , Água/química
6.
J Nanosci Nanotechnol ; 16(6): 6526-34, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427747

RESUMO

In this paper, we present the optimization of porous anodic alumina membranes for ultrafiltration prepared by anodically oxidized aluminum foils. The membranes were characterized by field-emission scanning electron microscopy to measure the pore diameter and the membrane thicknesses. The liquid fluxes were estimated through gas permeability measurements using Darcy's and Forchheimers equations. A 2(3) factorial design we used to optimize the membrane properties: pore diameter, membrane thickness, and liquid flux using as control variables the applied current density, solution composition and concentration. It was observed that the most import variables to control the pore diameter were current density and electrolyte composition. After the anodization both, metallic aluminum substrate and the barrier layer of alumina were removed using adequate solutions to obtain the free standing membrane. Then, Escherichia coli a common bacterial contamination of drinking water was removed using these PAA membranes with 100% of efficiency to obtain bacteria-free water.


Assuntos
Óxido de Alumínio/química , Escherichia coli/isolamento & purificação , Membranas Artificiais , Ultrafiltração/métodos , Eletrodos , Hidrodinâmica , Porosidade , Ultrafiltração/instrumentação
7.
Anal Chim Acta ; 897: 17-23, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26515001

RESUMO

There are some electrocatalytic reactions in which the key parameter explaining their behavior is a local change in pH. Therefore, it is of utter importance to develop an electrode that could quantify this parameter in situ, but also be customizable to be used in different systems. The purpose of this work is to build a versatile rotating ring/disc electrode (RRDE) with IrOx deposited on a glass tube as a ring and any kind of material as disc. As the IrOx is sensitive to pH variation, the reactions promoted on the disc can trigger proportional pH shifts on the ring. In such assembly, the IrOx ring presents a fast response time even during the pH transients due to the small thickness of the ring (approximately 10 µm), which enables the detection of interfacial pH changes. The ring electrode was tested toward the interfacial pH shift observed during the electrolytic reduction of water on the disc and also characterized by acid-base titration to determine the response time. As the main conclusions, fast response and durable RRDE were obtained, and this assembly could be used to revisit many electrocatalytic reactions in order to test the importance of local pH on the process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA