Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 22(3): e12600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725144

RESUMO

Microbial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes. When energy availability is limited, cell-specific sulfate respiration rates and net sulfur isotope fractionation inversely covary. Beyond net S isotope fractionation values, we also quantified shifts in protein expression, abundances and isotopic composition of intracellular S metabolites, and lipid structures and lipid/water H isotope fractionation values. These coupled approaches reveal which protein abundances shift directly as a function of energy flux, those that vary minimally, and those that may vary independent of energy flux and likely do not contribute to shifts in S-isotope fractionation. By coupling the bulk S-isotope observations with quantitative proteomics, we provide novel constraints for metabolic isotope models. Together, these results lay the foundation for more predictive metabolic fractionation models, alongside interpretations of environmental sulfur and sulfate reducer lipid-H isotope data.


Assuntos
Desulfovibrio vulgaris , Proteômica , Isótopos de Enxofre , Isótopos de Enxofre/análise , Isótopos de Enxofre/metabolismo , Desulfovibrio vulgaris/metabolismo , Proteoma/metabolismo , Proteoma/análise , Metabolismo Energético , Metaboloma , Proteínas de Bactérias/metabolismo , Oxirredução , Sulfatos/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(6): e2313650121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285932

RESUMO

Microbial dissimilatory sulfate reduction (DSR) is a key process in the Earth biogeochemical sulfur cycle. In spite of its importance to the sulfur and carbon cycles, industrial processes, and human health, it is still not clear how reduction of sulfate to sulfide is coupled to energy conservation. A central step in the pathway is the reduction of sulfite by the DsrAB dissimilatory sulfite reductase, which leads to the production of a DsrC-trisulfide. A membrane-bound complex, DsrMKJOP, is present in most organisms that have DsrAB and DsrC, and its involvement in energy conservation has been inferred from sequence analysis, but its precise function was so far not determined. Here, we present studies revealing that the DsrMKJOP complex of the sulfate reducer Archaeoglobus fulgidus works as a menadiol:DsrC-trisulfide oxidoreductase. Our results reveal a close interaction between the DsrC-trisulfide and the DsrMKJOP complex and show that electrons from the quinone pool reduce consecutively the DsrM hemes b, the DsrK noncubane [4Fe-4S]3+/2+ catalytic center, and finally the DsrC-trisulfide with concomitant release of sulfide. These results clarify the role of this widespread respiratory membrane complex and support the suggestion that DsrMKJOP contributes to energy conservation upon reduction of the DsrC-trisulfide in the last step of DSR.


Assuntos
Sulfito de Hidrogênio Redutase , Sulfatos , Humanos , Sulfatos/metabolismo , Anaerobiose , Sulfito de Hidrogênio Redutase/metabolismo , Óxidos de Enxofre , Enxofre/metabolismo , Sulfetos/metabolismo , Respiração , Oxirredução
3.
Nat Commun ; 14(1): 7038, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923808

RESUMO

Organohalide-respiring bacteria are key organisms for the bioremediation of soils and aquifers contaminated with halogenated organic compounds. The major players in this process are respiratory reductive dehalogenases, corrinoid enzymes that use organohalides as substrates and contribute to energy conservation. Here, we present the structure of a menaquinol:organohalide oxidoreductase obtained by cryo-EM. The membrane-bound protein was isolated from Desulfitobacterium hafniense strain TCE1 as a PceA2B2 complex catalysing the dechlorination of tetrachloroethene. Two catalytic PceA subunits are anchored to the membrane by two small integral membrane PceB subunits. The structure reveals two menaquinone molecules bound at the interface of the two different subunits, which are the starting point of a chain of redox cofactors for electron transfer to the active site. In this work, the structure elucidates how energy is conserved during organohalide respiration in menaquinone-dependent organohalide-respiring bacteria.


Assuntos
Bactérias , Oxirredutases , Oxirredutases/metabolismo , Vitamina K 2/metabolismo , Oxirredução , Transporte de Elétrons , Bactérias/metabolismo , Biodegradação Ambiental
4.
Protein Sci ; 32(11): e4796, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779214

RESUMO

Electroactive bacteria combine the oxidation of carbon substrates with an extracellular electron transfer (EET) process that discharges electrons to an electron acceptor outside the cell. This process involves electron transfer through consecutive redox proteins that efficiently connect the inner membrane to the cell exterior. In this study, we isolated and characterized the quinone-interacting membrane cytochrome c ImcH from Geobacter sulfurreducens, which is involved in the EET process to high redox potential acceptors. Spectroscopic and electrochemical studies show that ImcH hemes have low midpoint redox potentials, ranging from -150 to -358 mV, and connect the oxidation of the quinol-pool to EET, transferring electrons to the highly abundant periplasmic cytochrome PpcA with higher affinity than to its homologues. Despite the larger number of hemes and transmembrane helices, the ImcH structural model has similarities with the NapC/NirT/NrfH superfamily, namely the presence of a quinone-binding site on the P-side of the membrane. In addition, the first heme, likely involved on the quinol oxidation, has apparently an unusual His/Gln coordination. Our work suggests that ImcH is electroneutral and transfers electrons and protons to the same side of the membrane, contributing to the maintenance of a proton motive force and playing a central role in recycling the menaquinone pool.


Assuntos
Elétrons , Geobacter , Hidroquinonas/metabolismo , Geobacter/metabolismo , Proteínas de Bactérias/química , Transporte de Elétrons , Oxirredução , Citocromos c/metabolismo , Quinonas/metabolismo
5.
ISME J ; 17(10): 1680-1692, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468676

RESUMO

Microbial dissimilatory sulfur metabolism utilizing dissimilatory sulfite reductases (Dsr) influenced the biochemical sulfur cycle during Earth's history and the Dsr pathway is thought to be an ancient metabolic process. Here we performed comparative genomics, phylogenetic, and synteny analyses of several Dsr proteins involved in or associated with the Dsr pathway across over 195,000 prokaryotic metagenomes. The results point to an archaeal origin of the minimal DsrABCMK(N) protein set, having as primordial function sulfite reduction. The acquisition of additional Dsr proteins (DsrJOPT) increased the Dsr pathway complexity. Archaeoglobus would originally possess the archaeal-type Dsr pathway and the archaeal DsrAB proteins were replaced with the bacterial reductive-type version, possibly at the same time as the acquisition of the QmoABC and DsrD proteins. Further inventions of two Qmo complex types, which are more spread than previously thought, allowed microorganisms to use sulfate as electron acceptor. The ability to use the Dsr pathway for sulfur oxidation evolved at least twice, with Chlorobi and Proteobacteria being extant descendants of these two independent adaptations.


Assuntos
Sulfito de Hidrogênio Redutase , Proteínas , Filogenia , Oxirredução , Sulfito de Hidrogênio Redutase/genética , Sulfito de Hidrogênio Redutase/metabolismo , Proteínas/metabolismo , Sulfatos/metabolismo , Sulfitos , Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
6.
Angew Chem Int Ed Engl ; 62(26): e202218782, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37078435

RESUMO

The electrolysis of dilute CO2 streams suffers from low concentrations of dissolved substrate and its rapid depletion at the electrolyte-electrocatalyst interface. These limitations require first energy-intensive CO2 capture and concentration, before electrolyzers can achieve acceptable performances. For direct electrocatalytic CO2 reduction from low-concentration sources, we introduce a strategy that mimics the carboxysome in cyanobacteria by utilizing microcompartments with nanoconfined enzymes in a porous electrode. A carbonic anhydrase accelerates CO2 hydration kinetics and minimizes substrate depletion by making all dissolved carbon available for utilization, while a highly efficient formate dehydrogenase reduces CO2 cleanly to formate; down to even atmospheric concentrations of CO2 . This bio-inspired concept demonstrates that the carboxysome provides a viable blueprint for the reduction of low-concentration CO2 streams to chemicals by using all forms of dissolved carbon.


Assuntos
Anidrases Carbônicas , Cianobactérias , Dióxido de Carbono , Organelas , Carbono
7.
Angew Chem Int Ed Engl ; 62(20): e202215894, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36888559

RESUMO

Formate production via both CO2 reduction and cellulose oxidation in a solar-driven process is achieved by a semi-artificial biohybrid photocatalyst consisting of immobilized formate dehydrogenase on titanium dioxide (TiO2 |FDH) producing up to 1.16±0.04 mmolformate g TiO 2 ${{_{\ {\rm TiO}{_{2}}}}}$ -1 in 24 hours at 30 °C and 101 kPa under anaerobic conditions. Isotopic labeling experiments with 13 C-labeled substrates support the mechanism of stoichiometric formate formation through both redox half-reactions. TiO2 |FDH was further immobilized on hollow glass microspheres to perform more practical floating photoreforming allowing vertical solar light illumination with optimal light exposure of the photocatalyst to real sunlight. Enzymatic cellulose depolymerization coupled to the floating photoreforming catalyst generates 0.36±0.04 mmolformate per m2 irradiation area after 24 hours. This work demonstrates the synergistic solar-driven valorization of solid and gaseous waste streams using a biohybrid photoreforming catalyst in aqueous solution and will thus provide inspiration for the development of future semi-artificial waste-to-chemical conversion strategies.

8.
Environ Microbiol ; 25(5): 962-976, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602077

RESUMO

DsrC is a key protein in dissimilatory sulfur metabolism, where it works as co-substrate of the dissimilatory sulfite reductase DsrAB. DsrC has two conserved cysteines in a C-terminal arm that are converted to a trisulfide upon reduction of sulfite. In sulfate-reducing bacteria, DsrC is essential and previous works suggested additional functions beyond sulfite reduction. Here, we studied whether DsrC also plays a role during fermentative growth of Desulfovibrio vulgaris Hildenborough, by studying two strains where the functionality of DsrC is impaired by a lower level of expression (IPFG07) and additionally by the absence of one conserved Cys (IPFG09). Growth studies coupled with metabolite and proteomic analyses reveal that fermentation leads to lower levels of DsrC, but impairment of its function results in reduced growth by fermentation and a shift towards more fermentative metabolism during sulfate respiration. In both respiratory and fermentative conditions, there is increased abundance of the FlxABCD-HdrABC complex and Adh alcohol dehydrogenase in IPFG09 versus the wild type, which is reflected in higher production of ethanol. Pull-down experiments confirmed a direct interaction between DsrC and the FlxABCD-HdrABC complex, through the HdrB subunit. Dissimilatory sulfur metabolism, where sulfur compounds are used for energy generation, is a key process in the ecology of anoxic environments, and is more widespread among bacteria than previously believed. Two central proteins for this type of metabolism are DsrAB dissimilatory sulfite reductase and its co-substrate DsrC. Using physiological, proteomic and biochemical studies of Desulfovibrio vulgaris Hildenborough and mutants affected in DsrC functionality, we show that DsrC is also relevant for fermentative growth of this model organism and that it interacts directly with the soluble FlxABCD-HdrABC complex that links the NAD(H) pool with dissimilatory sulfite reduction.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Fermentação , Cisteína , Desulfovibrio vulgaris/genética , Fermentação/genética , Sulfito de Hidrogênio Redutase , Oxirredução , Proteômica , Sulfitos , Enxofre
9.
J Am Chem Soc ; 145(1): 7-11, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542731

RESUMO

The noncubane [4Fe-4S] cluster identified in the active site of heterodisulfide reductase (HdrB) displays a unique geometry among Fe-S cofactors found in metalloproteins. Here we employ resonance Raman (RR) spectroscopy and density functional theory (DFT) calculations to probe structural, electronic, and vibrational properties of the noncubane cluster in HdrB from a non-methanogenic Desulfovibrio vulgaris (Dv) Hildenborough organism. The immediate protein environment of the two neighboring clusters in DvHdrB is predicted using homology modeling. We demonstrate that in the absence of substrate, the oxidized [4Fe-4S]3+ cluster adopts a "closed" conformation. Upon substrate coordination at the "special" iron center, the cluster core translates to an "open" structure, facilitated by the "supernumerary" cysteine ligand switch from iron-bridging to iron-terminal mode. The observed RR fingerprint of the noncubane cluster, supported by Fe-S vibrational mode analysis, will advance future studies of enzymes containing this unusual cofactor.


Assuntos
Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/química , Oxirredutases/metabolismo , Análise Espectral Raman , Ferro/química , Espectroscopia de Ressonância de Spin Eletrônica
10.
Angew Chem Int Ed Engl ; 62(6): e202212224, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36465058

RESUMO

Metal-based formate dehydrogenases are molybdenum or tungsten-dependent enzymes that catalyze the interconversion between formate and CO2 . According to the current consensus, the metal ion of the catalytic center in its active form is coordinated by 6 S (or 5 S and 1 Se) atoms, leaving no free coordination sites to which formate could bind to the metal. Some authors have proposed that one of the active site ligands decoordinates during turnover to allow formate binding. Another proposal is that the oxidation of formate takes place in the second coordination sphere of the metal. Here, we have used electrochemical steady-state kinetics to elucidate the order of the steps in the catalytic cycle of two formate dehydrogenases. Our results strongly support the "second coordination sphere" hypothesis.


Assuntos
Formiato Desidrogenases , Molibdênio , Formiato Desidrogenases/metabolismo , Molibdênio/química , Domínio Catalítico , Formiatos/química , Oxirredução , Cinética
11.
J Am Chem Soc ; 144(31): 14207-14216, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900819

RESUMO

Semiartificial approaches to renewable fuel synthesis exploit the integration of enzymes with synthetic materials for kinetically efficient fuel production. Here, a CO2 reductase, formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough, is interfaced with carbon nanotubes (CNTs) and amorphous carbon dots (a-CDs). Each carbon substrate, tailored for electro- and photocatalysis, is functionalized with positive (-NHMe2+) and negative (-COO-) chemical surface groups to understand and optimize the electrostatic effect of protein association and orientation on CO2 reduction. Immobilization of FDH on positively charged CNT electrodes results in efficient and reversible electrochemical CO2 reduction via direct electron transfer with >90% Faradaic efficiency and -250 µA cm-2 at -0.6 V vs SHE (pH 6.7 and 25 °C) for formate production. In contrast, negatively charged CNTs only result in marginal currents with immobilized FDH. Quartz crystal microbalance analysis and attenuated total reflection infrared spectroscopy confirm the high binding affinity of active FDH to CNTs. FDH has subsequently been coupled to a-CDs, where the benefits of the positive charge (-NHMe2+-terminated a-CDs) were translated to a functional CD-FDH hybrid photocatalyst. High rates of photocatalytic CO2 reduction (turnover frequency: 3.5 × 103 h-1; AM 1.5G) with dl-dithiothreitol as the sacrificial electron donor were obtained after 6 h, providing benchmark rates for homogeneous photocatalytic CO2 reduction with metal-free light absorbers. This work provides a rational basis to understand interfacial surface/enzyme interactions at electrodes and photosensitizers to guide improvements with catalytic biohybrid materials.


Assuntos
Formiato Desidrogenases , Nanotubos de Carbono , Dióxido de Carbono/química , Catálise , Eletrodos , Formiato Desidrogenases/química
12.
ACS Catal ; 12(3): 1886-1897, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35573129

RESUMO

The immobilization of redox enzymes on electrodes enables the efficient and selective electrocatalysis of useful reactions such as the reversible interconversion of dihydrogen (H2) to protons (H+) and formate to carbon dioxide (CO2) with hydrogenase (H2ase) and formate dehydrogenase (FDH), respectively. However, their immobilization on electrodes to produce electroactive protein films for direct electron transfer (DET) at the protein-electrode interface is not well understood, and the reasons for their activity loss remain vague, limiting their performance often to hour timescales. Here, we report the immobilization of [NiFeSe]-H2ase and [W]-FDH from Desulfovibrio vulgaris Hildenborough on a range of charged and neutral self-assembled monolayer (SAM)-modified gold electrodes with varying hydrogen bond (H-bond) donor capabilities. The key factors dominating the activity and stability of the immobilized enzymes are determined using protein film voltammetry (PFV), chronoamperometry (CA), and electrochemical quartz crystal microbalance (E-QCM) analysis. Electrostatic and H-bonding interactions are resolved, with electrostatic interactions responsible for enzyme orientation while enzyme desorption is strongly limited when H-bonding is present at the enzyme-electrode interface. Conversely, enzyme stability is drastically reduced in the absence of H-bonding, and desorptive enzyme loss is confirmed as the main reason for activity decay by E-QCM during CA. This study provides insights into the possible reasons for the reduced activity of immobilized redox enzymes and the role of film loss, particularly H-bonding, in stabilizing bioelectrode performance, promoting avenues for future improvements in bioelectrocatalysis.

13.
Nat Chem ; 14(4): 417-424, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35228690

RESUMO

The performance of heterogeneous catalysts for electrocatalytic CO2 reduction suffers from unwanted side reactions and kinetic inefficiencies at the required large overpotential. However, immobilized CO2 reduction enzymes-such as formate dehydrogenase-can operate with high turnover and selectivity at a minimal overpotential and are therefore 'ideal' model catalysts. Here, through the co-immobilization of carbonic anhydrase, we study the effect of CO2 hydration on the local environment and performance of a range of disparate CO2 reduction systems from enzymatic (formate dehydrogenase) to heterogeneous systems. We show that the co-immobilization of carbonic anhydrase increases the kinetics of CO2 hydration at the electrode. This benefits enzymatic CO2 reduction-despite the decrease in CO2 concentration-due to a reduction in local pH change, whereas it is detrimental to heterogeneous catalysis (on Au) because the system is unable to suppress the H2 evolution side reaction. Understanding the role of CO2 hydration kinetics within the local environment on the performance of electrocatalyst systems provides important insights for the development of next-generation synthetic CO2 reduction catalysts.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Catálise , Enzimas Imobilizadas/metabolismo , Cinética
14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058361

RESUMO

Bioelectrochemistry employs an array of high-surface-area meso- and macroporous electrode architectures to increase protein loading and the electrochemical current response. While the local chemical environment has been studied in small-molecule and heterogenous electrocatalysis, conditions in enzyme electrochemistry are still commonly established based on bulk solution assays, without appropriate consideration of the nonequilibrium conditions of the confined electrode space. Here, we apply electrochemical and computational techniques to explore the local environment of fuel-producing oxidoreductases within porous electrode architectures. This improved understanding of the local environment enabled simple manipulation of the electrolyte solution by adjusting the bulk pH and buffer pKa to achieve an optimum local pH for maximal activity of the immobilized enzyme. When applied to macroporous inverse opal electrodes, the benefits of higher loading and increased mass transport were employed, and, consequently, the electrolyte adjusted to reach -8.0 mA ⋅ cm-2 for the H2 evolution reaction and -3.6 mA ⋅ cm-2 for the CO2 reduction reaction (CO2RR), demonstrating an 18-fold improvement on previously reported enzymatic CO2RR systems. This research emphasizes the critical importance of understanding the confined enzymatic chemical environment, thus expanding the known capabilities of enzyme bioelectrocatalysis. These considerations and insights can be directly applied to both bio(photo)electrochemical fuel and chemical synthesis, as well as enzymatic fuel cells, to significantly improve the fundamental understanding of the enzyme-electrode interface as well as device performance.


Assuntos
Técnicas Eletroquímicas , Eletroquímica , Enzimas/química , Algoritmos , Soluções Tampão , Eletrodos , Eletrólitos/química , Microeletrodos , Estrutura Molecular , Porosidade , Relação Estrutura-Atividade
15.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064091

RESUMO

Dissimilatory sulfur metabolism was recently shown to be much more widespread among bacteria and archaea than previously believed. One of the key pathways involved is the dsr pathway that is responsible for sulfite reduction in sulfate-, sulfur-, thiosulfate-, and sulfite-reducing organisms, sulfur disproportionators and organosulfonate degraders, or for the production of sulfite in many photo- and chemotrophic sulfur-oxidizing prokaryotes. The key enzyme is DsrAB, the dissimilatory sulfite reductase, but a range of other Dsr proteins is involved, with different gene sets being present in organisms with a reductive or oxidative metabolism. The dsrD gene codes for a small protein of unknown function and has been widely used as a functional marker for reductive or disproportionating sulfur metabolism, although in some cases this has been disputed. Here, we present in vivo and in vitro studies showing that DsrD is a physiological partner of DsrAB and acts as an activator of its sulfite reduction activity. DsrD is expressed in respiratory but not in fermentative conditions and a ΔdsrD deletion strain could be obtained, indicating that its function is not essential. This strain grew less efficiently during sulfate and sulfite reduction. Organisms with the earliest forms of dsrAB lack the dsrD gene, revealing that its activating role arose later in evolution relative to dsrAB.


Assuntos
Sulfito de Hidrogênio Redutase/metabolismo , Enxofre/metabolismo , Regulação Alostérica , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Deleção de Genes , Regulação da Expressão Gênica , Modelos Biológicos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Enxofre/química
16.
Angew Chem Int Ed Engl ; 60(50): 26303-26307, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34472692

RESUMO

Semi-artificial photoelectrochemistry can combine state-of-the-art photovoltaic light-absorbers with enzymes evolved for selective fuel-forming reactions such as CO2 reduction, but the overall performance of such hybrid systems has been limited to date. Here, the electrolyte constituents were first tuned to establish an optimal local environment for a W-formate dehydrogenase to perform electrocatalysis. The CO2 reductase was then interfaced with a triple cation lead mixed-halide perovskite through a hierarchically structured porous TiO2 scaffold to produce an integrated photocathode achieving a photocurrent density of -5 mA cm-2 at 0.4 V vs. the reversible hydrogen electrode during simulated solar light irradiation. Finally, the combination with a water-oxidizing BiVO4 photoanode produced a bias-free integrated biophotoelectrochemical tandem device (semi-artificial leaf) with a solar CO2 -to-formate energy conversion efficiency of 0.8 %.

17.
Biochim Biophys Acta Bioenerg ; 1862(7): 148416, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753023

RESUMO

In prokaryotes, the proton or sodium motive force required for ATP synthesis is produced by respiratory complexes that present an ion-pumping mechanism or are involved in redox loops performed by membrane proteins that usually have substrate and quinone-binding sites on opposite sides of the membrane. Some respiratory complexes include a dimeric redox module composed of a quinone-interacting membrane protein of the NrfD family and an iron­sulfur protein of the NrfC family. The QrcABCD complex of sulfate reducers, which includes the QrcCD module homologous to NrfCD, was recently shown to perform electrogenic quinone reduction providing the first conclusive evidence for energy conservation among this family. Similar redox modules are present in multiple respiratory complexes, which can be associated with electroneutral, energy-driven or electrogenic reactions. This work discusses the presence of the NrfCD/PsrBC dimeric redox module in different bioenergetics contexts and its role in prokaryotic energy conservation mechanisms.


Assuntos
Respiração Celular , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Anaerobiose , Evolução Molecular , Oxirredução , Conformação Proteica
18.
ACS Appl Mater Interfaces ; 13(10): 11891-11900, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33656858

RESUMO

The decrease of greenhouse gases such as CO2 has become a key challenge for the human kind and the study of the electrocatalytic properties of CO2-reducing enzymes such as formate dehydrogenases is of importance for this goal. In this work, we study the covalent bonding of Desulfovibrio vulgaris Hildenborough FdhAB formate dehydrogenase to chemically modified gold and low-density graphite electrodes, using electrostatic interactions for favoring oriented immobilization of the enzyme. Electrochemical measurements show both bioelectrocatalytic oxidation of formate and reduction of CO2 by direct electron transfer (DET). Atomic force microscopy and quartz crystal microbalance characterization, as well as a comparison of direct and mediated electrocatalysis, suggest that a compact layer of formate dehydrogenase was anchored to the electrode surface with some crosslinked aggregates. Furthermore, the operational stability for CO2 electroreduction to formate by DET is shown with approximately 100% Faradaic yield.


Assuntos
Desulfovibrio vulgaris/enzimologia , Enzimas Imobilizadas/química , Formiato Desidrogenases/química , Ouro/química , Grafite/química , Dióxido de Carbono/química , Eletrodos , Modelos Moleculares , Oxirredução
19.
Angew Chem Int Ed Engl ; 60(18): 9964-9967, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33599383

RESUMO

Mo/W formate dehydrogenases catalyze the reversible reduction of CO2 species to formate. It is thought that the substrate is CO2 and not a hydrated species like HCO3- , but there is still no indisputable evidence for this, in spite of the extreme importance of the nature of the substrate for mechanistic studies. We devised a simple electrochemical method to definitively demonstrate that the substrate of formate dehydrogenases is indeed CO2 .


Assuntos
Dióxido de Carbono/metabolismo , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Dióxido de Carbono/química , Formiatos/química , Oxirredução
20.
Angew Chem Int Ed Engl ; 60(16): 9055-9062, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33450130

RESUMO

Storage of solar energy as hydrogen provides a platform towards decarbonizing our economy. One emerging strategy for the production of solar fuels is to use photocatalytic biohybrid systems that combine the high catalytic activity of non-photosynthetic microorganisms with the high light-harvesting efficiency of metal semiconductor nanoparticles. However, few such systems have been tested for H2 production. We investigated light-driven H2 production by three novel organisms, Desulfovibrio desulfuricans, Citrobacter freundii, and Shewanella oneidensis, self-photosensitized with cadmium sulfide nanoparticles, and compared their performance to Escherichia coli. All biohybrid systems produced H2 from light, with D. desulfuricans-CdS demonstrating the best activity overall and outperforming the other microbial systems even in the absence of a mediator. With this system, H2 was continuously produced for more than 10 days with a specific rate of 36 µmol gdcw-1 h-1 . High apparent quantum yields of 23 % and 4 % were obtained, with and without methyl viologen, respectively, exceeding values previously reported.


Assuntos
Compostos de Cádmio/metabolismo , Hidrogênio/metabolismo , Luz , Nanopartículas/metabolismo , Sulfetos/metabolismo , Compostos de Cádmio/química , Citrobacter freundii/química , Citrobacter freundii/metabolismo , Desulfovibrio desulfuricans/química , Desulfovibrio desulfuricans/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Hidrogênio/química , Nanopartículas/química , Tamanho da Partícula , Processos Fotoquímicos , Shewanella/química , Shewanella/metabolismo , Sulfetos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA