Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Am Coll Cardiol ; 82(20): 1921-1931, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37940229

RESUMO

BACKGROUND: Despite major advances in pharmacological treatment for patients with heart failure, residual mortality remains high. This suggests that important pathways are not yet targeted by current heart failure therapies. OBJECTIVES: We sought integration of genetic, transcriptomic, and proteomic data in a large cohort of patients with heart failure to detect major pathways related to progression of heart failure leading to death. METHODS: We used machine learning methodology based on stacked generalization framework and gradient boosting algorithms, using 54 clinical phenotypes, 403 circulating plasma proteins, 36,046 transcript expression levels in whole blood, and 6 million genomic markers to model all-cause mortality in 2,516 patients with heart failure from the BIOSTAT-CHF (Systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure) study. Results were validated in an independent cohort of 1,738 patients. RESULTS: The mean age of the patients was 70 years (Q1-Q3: 61-78 years), 27% were female, median N-terminal pro-B-type natriuretic peptide was 4,275 ng/L (Q1-Q3: 2,360-8,486 ng/L), and 7% had heart failure with preserved ejection fraction. During a median follow-up of 21 months, 657 (26%) of patients died. The 4 major pathways with a significant association to all-cause mortality were: 1) the PI3K/Akt pathway; 2) the MAPK pathway; 3) the Ras signaling pathway; and 4) epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results were validated in an independent cohort of 1,738 patients. CONCLUSIONS: A systems biology approach integrating genomic, transcriptomic, and proteomic data identified 4 major pathways related to mortality. These pathways are related to decreased activation of the cardioprotective ERBB2 receptor, which can be modified by neuregulin.


Assuntos
Insuficiência Cardíaca , Proteômica , Humanos , Feminino , Idoso , Masculino , Biomarcadores , Multiômica , Fosfatidilinositol 3-Quinases/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico
2.
Polymers (Basel) ; 15(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896321

RESUMO

The addition of toxic flame retardants to commercially available polymers is often required for safety reasons due to the high flammability of these materials. In this work, the preparation and incorporation of efficient biodegradable starch-based flame retardants into a low-density polyethylene (LDPE) matrix was investigated. Thermoplastic starch was first obtained by plasticizing starch with glycerol/water or glycerol/water/choline phytate to obtain TPS-G and TPS-G-CPA, respectively. Various LDPE/TPS blends were prepared by means of melt blending using polyethylene graft maleic anhydride as a compatibilizer and by varying the content of TPS and a halogenated commercial flame retardant. By replacing 38% and 76% of the harmful commercial flame retardant with safe TPS-G-CPA and TPS-G, respectively, blends with promising fire behavior were obtained, while the limiting oxygen index (LOI ≈ 28%) remained the same. The presence of choline phytate improved both the charring ability and fire retardancy of starch and resulted in a 43% reduction in fire growth index compared to the blend with commercial flame retardant only, as confirmed by means of cone calorimetry. Standard UL 94 vertical tests showed that blends containing TPS exhibited dripping behavior (rated V2), while those with commercial flame retardant were rated V0. Overall, this work demonstrates the potential of starch as a natural flame retardant that could reduce the cost and increase the safety of polymer-based materials.

3.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717247

RESUMO

Systemic inflammation halts lymphopoiesis and prioritizes myeloid cell production. How blood cell production switches from homeostasis to emergency myelopoiesis is incompletely understood. Here, we show that lymphotoxin-ß receptor (LTßR) signaling in combination with TNF and IL-1 receptor signaling in bone marrow mesenchymal stem cells (MSCs) down-regulates Il7 expression to shut down lymphopoiesis during systemic inflammation. LTßR signaling in MSCs also promoted CCL2 production during systemic inflammation. Pharmacological or genetic blocking of LTßR signaling in MSCs partially enabled lymphopoiesis and reduced monocyte numbers in the spleen during systemic inflammation, which correlated with reduced survival during systemic bacterial and viral infections. Interestingly, lymphotoxin-α1ß2 delivered by B-lineage cells, and specifically by mature B cells, contributed to promote Il7 down-regulation and reduce MSC lymphopoietic activity. Our studies revealed an unexpected role of LTßR signaling in MSCs and identified recirculating mature B cells as an important regulator of emergency myelopoiesis.


Assuntos
Células-Tronco Mesenquimais , Mielopoese , Humanos , Interleucina-7 , Linfócitos B/metabolismo , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo
4.
Cureus ; 15(12): e50892, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38249195

RESUMO

McArdle's disease is a rare autosomal recessive disorder that affects glycogen storage. It typically manifests in adolescence or early adulthood with presenting symptoms, such as fatigue, myalgia, exercise intolerance, and cramps, which can be easily overlooked. This case report seeks to offer a comprehensive overview of the perspective of a patient living with McArdle's disease, emphasizing the importance of treatment encouragement. The report documents the case of a 25-year-old male presenting with myalgia and fatigue exacerbated by strenuous exercise, illustrating the diagnostic challenges associated with McArdle's disease, primarily attributable to clinician unawareness. Furthermore, the case highlights the importance of adhering to lifestyle modifications to mitigate symptoms and prevent flare-ups, as well as the crucial role of the family doctor in such lifestyle maintenance.

5.
Sci Immunol ; 7(75): eabo3170, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149943

RESUMO

Gain-of-function (GOF) mutations in CXCR4 cause WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, characterized by infections, leukocyte retention in bone marrow (BM), and blood leukopenias. B lymphopenia is evident at early progenitor stages, yet why do CXCR4 GOF mutations that cause B (and T) lymphopenia remain obscure? Using a CXCR4 R334X GOF mouse model of WHIM syndrome, we showed that lymphopoiesis is reduced because of a dysregulated mesenchymal stem cell (MSC) transcriptome characterized by a switch from an adipogenic to an osteolineage-prone program with limited lymphopoietic activity. We identify lymphotoxin beta receptor (LTßR) as a critical pathway promoting interleukin-7 (IL-7) down-regulation in MSCs. Blocking LTßR or CXCR4 signaling restored IL-7 production and B cell development in WHIM mice. LTßR blocking also increased production of IL-7 and B cell activating factor (BAFF) in secondary lymphoid organs (SLOs), increasing B and T cell numbers in the periphery. These studies revealed that LTßR signaling in BM MSCs and SLO stromal cells limits the lymphocyte compartment size.


Assuntos
Síndromes de Imunodeficiência , Linfopenia , Animais , Fator Ativador de Células B , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Interleucina-7 , Receptor beta de Linfotoxina , Camundongos , Doenças da Imunodeficiência Primária , Nicho de Células-Tronco , Linfócitos T , Verrugas
6.
Nat Commun ; 13(1): 4611, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941168

RESUMO

Cellular competition for limiting hematopoietic factors is a physiologically regulated but poorly understood process. Here, we studied this phenomenon by hampering hematopoietic progenitor access to Leptin receptor+ mesenchymal stem/progenitor cells (MSPCs) and endothelial cells (ECs). We show that HSC numbers increase by 2-fold when multipotent and lineage-restricted progenitors fail to respond to CXCL12 produced by MSPCs and ECs. HSCs are qualitatively normal, and HSC expansion only occurs when early hematopoietic progenitors but not differentiated hematopoietic cells lack CXCR4. Furthermore, the MSPC and EC transcriptomic heterogeneity is stable, suggesting that it is impervious to major changes in hematopoietic progenitor interactions. Instead, HSC expansion correlates with increased availability of membrane-bound stem cell factor (mSCF) on MSPCs and ECs presumably due to reduced consumption by cKit-expressing hematopoietic progenitors. These studies suggest that an intricate homeostatic balance between HSCs and proximal hematopoietic progenitors is regulated by cell competition for limited amounts of mSCF.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Diferenciação Celular , Células-Tronco Hematopoéticas , Fator de Células-Tronco
7.
J Biochem Mol Toxicol ; 36(10): e23170, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35822649

RESUMO

Mercury is widely used in industrial and extractive processes, and the improper disposal of waste or products containing this metal produces a significant impact on ecosystems, causing adverse effects on living organisms, including humans. Exposure to methylmercury, a highly toxic organic compound, causes important neurological and developmental impairments. Recently, the genotoxicity of mercurial compounds has gained prominence as one of the possible mechanisms associated with the neurological effects of mercury, mostly by disturbing the mitotic spindle and causing chromosome loss. In this sense, it is important to investigate if these compounds can also cause direct damage to DNA, such as single and double-strand breaks. Thus, the aim of this study was to investigate the cytotoxic and genotoxic potential of methylmercury in cell lines derived from neurons (B103) and glia (C6), exposed to methylmercury (MeHg) for 24 h, by analyzing cell viability, metabolic activity, and damage to DNA and chromosomes. We found that in comparison to the neuronal cell line, glial cells showed higher tolerance to MeHg, and therefore a higher LC50 and consequent higher intracellular accumulation of Hg, which led to the occurrence of several genotoxic effects, as evidenced by the presence of micronuclei, bridges, sprouts, and chromosomal aberrations.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Dano ao DNA , Ecossistema , Humanos , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Neuroglia/metabolismo
8.
Eur Heart J ; 43(16): 1569-1577, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35139537

RESUMO

AIMS: Current risk scores do not accurately identify patients at highest risk of recurrent atherosclerotic cardiovascular disease (ASCVD) in need of more intensive therapeutic interventions. Advances in high-throughput plasma proteomics, analysed with machine learning techniques, may offer new opportunities to further improve risk stratification in these patients. METHODS AND RESULTS: Targeted plasma proteomics was performed in two secondary prevention cohorts: the Second Manifestations of ARTerial disease (SMART) cohort (n = 870) and the Athero-Express cohort (n = 700). The primary outcome was recurrent ASCVD (acute myocardial infarction, ischaemic stroke, and cardiovascular death). Machine learning techniques with extreme gradient boosting were used to construct a protein model in the derivation cohort (SMART), which was validated in the Athero-Express cohort and compared with a clinical risk model. Pathway analysis was performed to identify specific pathways in high and low C-reactive protein (CRP) patient subsets. The protein model outperformed the clinical model in both the derivation cohort [area under the curve (AUC): 0.810 vs. 0.750; P < 0.001] and validation cohort (AUC: 0.801 vs. 0.765; P < 0.001), provided significant net reclassification improvement (0.173 in validation cohort) and was well calibrated. In contrast to a clear interleukin-6 signal in high CRP patients, neutrophil-signalling-related proteins were associated with recurrent ASCVD in low CRP patients. CONCLUSION: A proteome-based risk model is superior to a clinical risk model in predicting recurrent ASCVD events. Neutrophil-related pathways were found in low CRP patients, implying the presence of a residual inflammatory risk beyond traditional NLRP3 pathways. The observed net reclassification improvement illustrates the potential of proteomics when incorporated in a tailored therapeutic approach in secondary prevention patients.


Assuntos
Aterosclerose , Isquemia Encefálica , Doenças Cardiovasculares , Acidente Vascular Cerebral , Proteína C-Reativa/análise , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco de Doenças Cardíacas , Humanos , Proteômica , Medição de Risco/métodos , Fatores de Risco , Prevenção Secundária
9.
J Cardiovasc Pharmacol ; 79(4): 431-443, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935698

RESUMO

ABSTRACT: The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has significant implications in patients with concomitant cardiovascular disease (CVD) because they are the population at the greatest risk of death. The treatment of such patients and complications may represent a new challenge for the fields of cardiology and pharmacology. Thus, understanding the involvement of this viral infection in CVD might help to reduce the aggressiveness of SARS-CoV-2 in causing multiorgan infection and damage. SARS-CoV-2 disturbs the host epigenome and several epigenetic processes involved in the pathophysiology of COVID-19 that can directly affect the function and structure of the cardiovascular system (CVS). Hence, it would be relevant to identify epigenetic alterations that directly impact CVS physiology after SARS-CoV-2 infection. This could contribute to the view of this virus-induced CVS injury and direct forthcoming tackles for COVID-19 treatment to reduce mortality in patients with CVD. Targeting epigenetic marks could offer strong evidence for the development of novel antiviral therapies, especially in the context of COVID-19-related CVS damage. In this review, we address some of the main signaling pathways that are currently known as being involved in COVID-19 pathophysiology and the importance of this glint on epigenetics and some of its modifiers (epidrugs) to control the unregulated epitope activity in the context of SARS-CoV-2 infection, COVID-19, and underlying CVD.


Assuntos
Tratamento Farmacológico da COVID-19 , Doenças Cardiovasculares , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Epigênese Genética , Humanos , SARS-CoV-2
10.
Gut Microbes ; 13(1): 1993513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34747338

RESUMO

Accumulating evidence shows that microbes with their theater of activity residing within the human intestinal tract (i.e., the gut microbiome) influence host metabolism. Some of the strongest results come from recent fecal microbial transplant (FMT) studies that relate changes in intestinal microbiota to various markers of metabolism as well as the pathophysiology of insulin resistance. Despite these developments, there is still a limited understanding of the multitude of effects associated with FMT on the general physiology of the host, beyond changes in gut microbiome composition. We examined the effect of either allogenic (lean donor) or autologous FMTs on the gut microbiome, plasma metabolome, and epigenomic (DNA methylation) reprogramming in peripheral blood mononuclear cells in individuals with metabolic syndrome measured at baseline (pre-FMT) and after 6 weeks (post-FMT). Insulin sensitivity was determined with a stable isotope-based 2 step hyperinsulinemic clamp and multivariate machine learning methodology was used to uncover discriminative microbes, metabolites, and DNA methylation loci. A larger gut microbiota shift was associated with an allogenic than with autologous FMT. Furthemore, the data results of the the allogenic FMT group data indicates that the introduction of new species can potentially modulate the plasma metabolome and (as a result) the epigenome. Most notably, the introduction of Prevotella ASVs directly correlated with methylation of AFAP1, a gene involved in mitochondrial function, insulin sensitivity, and peripheral insulin resistance (Rd, rate of glucose disappearance). FMT was found to have notable effects on the gut microbiome but also on the host plasma metabolome and the epigenome of immune cells providing new avenues of inquiry in the context of metabolic syndrome treatment for the manipulation of host physiology to achieve improved insulin sensitivity.


Assuntos
Transplante de Microbiota Fecal , Síndrome Metabólica/terapia , Adulto , Idoso , Metilação de DNA , Feminino , Microbioma Gastrointestinal , Humanos , Resistência à Insulina , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/microbiologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
11.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956074

RESUMO

Portal hypertension is a major contributor to decompensation and death from liver disease, a global health problem. Here, we demonstrate homozygous damaging mutations in GIMAP5, a small organellar GTPase, in four families with unexplained portal hypertension. We show that GIMAP5 is expressed in hepatic endothelial cells and that its loss in both humans and mice results in capillarization of liver sinusoidal endothelial cells (LSECs); this effect is also seen when GIMAP5 is selectively deleted in endothelial cells. Single-cell RNA-sequencing analysis in a GIMAP5-deficient mouse model reveals replacement of LSECs with capillarized endothelial cells, a reduction of macrovascular hepatic endothelial cells, and places GIMAP5 upstream of GATA4, a transcription factor required for LSEC specification. Thus, GIMAP5 is a critical regulator of liver endothelial cell homeostasis and, when absent, produces portal hypertension. These findings provide new insight into the pathogenesis of portal hypertension, a major contributor to morbidity and mortality from liver disease.


Assuntos
Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Homeostase/fisiologia , Hipertensão Portal/metabolismo , Fígado/metabolismo , Adolescente , Adulto , Animais , Feminino , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/metabolismo , Masculino , Camundongos , Adulto Jovem
12.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671266

RESUMO

We assessed the feasibility of adjuvant S-1 and oxaliplatin following neoadjuvant chemoradiotherapy (nCRT) and esophagectomy. Patients treated with nCRT (paclitaxel, carboplatin) and esophagectomy received six 21-day cycles with oxaliplatin (130 mg/m2) on day 1 and S-1 (25 mg/m2 twice daily) on days 1-14. The primary endpoint was feasibility, defined as ≥50% completing treatment. We performed exploratory propensity-score matching to compare survival, ERCC1 and Thymidylate Synthase (TS) immunohistochemistry analyses, proteomics biomarker discovery and 5-FU pharmacokinetic analyses. Forty patients were enrolled and 48% completed all adjuvant cycles. Median dose intensity was 98% for S-1 and 62% for oxaliplatin. The main reason for early discontinuation was toxicity (67%). The median recurrence-free and overall survival were 28.3 months and 40.8 months, respectively (median follow-up 29.1 months). Survival was not significantly prolonged compared to a matched cohort (p = 0.09). Patients with ERCC1 negative tumor expression had significantly better survival compared to ERCC1 positivity (p = 0.01). Our protein signature model was predictive of survival [p = 0.04; Area under the curve (AUC) 0.80]. Moreover, 5-FU pharmacokinetics significantly correlated with treatment-related toxicity. To conclude, six cycles adjuvant S-1 and oxaliplatin were not feasible in pretreated esophageal adenocarcinoma. Although the question remains whether additional treatment with chemotherapy should be provided in the adjuvant setting, subgroups such as patients with ERCC1 negativity could potentially benefit from adjuvant SOX based on our exploratory biomarker research.

13.
Front Immunol ; 11: 600127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324418

RESUMO

Studies over the last couple of decades have shown that hematopoietic stem cells (HSCs) are critically dependent on cytokines such as Stem Cell Factor and other signals provided by bone marrow niches comprising of mesenchymal stem and progenitor cells (MSPCs) and endothelial cells (ECs). Because of their critical roles in HSC maintenance the niches formed by MSPCs and ECs are commonly referred to as HSC niches. For the most part, the signals required for HSC maintenance act in a short-range manner, which imposes the necessity for directional and positional cues in order for HSCs to localize and be retained properly in stem cell niches. The chemokine CXCL12 and its Gαi protein coupled receptor CXCR4, besides promoting HSC quiescence directly, also play instrumental roles in enabling HSCs to access bone marrow stem cell niches. Recent studies have revealed, however, that HSC niches also provide a constellation of hematopoietic cytokines that are critical for the production of most, if not all, blood cell types. Some hematopoietic cytokines, namely IL-7 and IL-15 produced by HSC niches, are not only required for lymphopoiesis but are also essential for memory T cell maintenance. Consequently, hematopoietic progenitors and differentiated immune cells, such as memory T cell subsets, also depend on the CXCL12/CXCR4 axis for migration into bone marrow and interactions with MSPCs and ECs. Similarly, subsets of antibody-secreting plasma cells also reside in close association with CXCL12-producing MSPCs in the bone marrow and require the CXCR4/CXCL12 axis for survival and long-term maintenance. Collectively, these studies demonstrate a broad range of key physiological roles, spanning blood cell production and maintenance of immunological memory, that are orchestrated by stem cell niches through a common and simple mechanism: CXCL12/CXCR4-mediated cell recruitment followed by receipt of a maintenance and/or instructive signal. A fundamental flaw of this type of cellular organization is revealed by myeloid and lymphoid leukemias, which target stem cell niches and induce profound transcriptomic changes that result in reduced hematopoietic activity and altered mesenchymal cell differentiation.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Memória Imunológica , Transdução de Sinais/imunologia , Nicho de Células-Tronco/imunologia , Animais , Células Endoteliais/imunologia , Humanos , Células-Tronco Mesenquimais/imunologia
14.
EBioMedicine ; 61: 103079, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33096472

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is a monogenic disorder characterized by elevated low-density lipoprotein cholesterol (LDL-C). A FH causing genetic variant in LDLR, APOB, or PCSK9 is not identified in 12-60% of clinical FH patients (FH mutation-negative patients). We aimed to assess whether altered DNA methylation might be associated with FH in this latter group. METHODS: In this study we included 78 FH mutation-negative patients and 58 FH mutation-positive patients with a pathogenic LDLR variant. All patients were male, not using lipid lowering therapies and had LDL-C levels >6 mmol/L and triglyceride levels <3.5 mmol/L. DNA methylation was measured with the Infinium Methylation EPIC 850 K beadchip assay. Multiple linear regression analyses were used to explore DNA methylation differences between the two groups in genes related to lipid metabolism. A gradient boosting machine learning model was applied to investigate accumulated genome-wide differences between the two groups. FINDINGS: Candidate gene analysis revealed one significantly hypomethylated CpG site in CPT1A (cg00574958) in FH mutation-negative patients, while no differences in methylation in other lipid genes were observed. The machine learning model did distinguish the two groups with a mean Area Under the Curve (AUC)±SD of 0.80±0.17 and provided two CpG sites (cg26426080 and cg11478607) in genes with a possible link to lipid metabolism (PRDM16 and GSTT1). INTERPRETATION: FH mutation-negative patients are characterized by accumulated genome wide DNA methylation differences, but not by major DNA methylation alterations in known lipid genes compared to FH mutation-positive patients. FUNDING: ZonMW grant (VIDI no. 016.156.445).


Assuntos
Metilação de DNA , Predisposição Genética para Doença , Hiperlipoproteinemia Tipo II/etiologia , Adolescente , Adulto , Biomarcadores , Biologia Computacional/métodos , Ilhas de CpG , Epigênese Genética , Epigenômica/métodos , Regulação da Expressão Gênica , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/metabolismo , Aprendizado de Máquina , Pessoa de Meia-Idade , Mutação , Curva ROC , Adulto Jovem
15.
Eur Heart J ; 41(41): 3998-4007, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32808014

RESUMO

AIMS: In the era of personalized medicine, it is of utmost importance to be able to identify subjects at the highest cardiovascular (CV) risk. To date, single biomarkers have failed to markedly improve the estimation of CV risk. Using novel technology, simultaneous assessment of large numbers of biomarkers may hold promise to improve prediction. In the present study, we compared a protein-based risk model with a model using traditional risk factors in predicting CV events in the primary prevention setting of the European Prospective Investigation (EPIC)-Norfolk study, followed by validation in the Progressione della Lesione Intimale Carotidea (PLIC) cohort. METHODS AND RESULTS: Using the proximity extension assay, 368 proteins were measured in a nested case-control sample of 822 individuals from the EPIC-Norfolk prospective cohort study and 702 individuals from the PLIC cohort. Using tree-based ensemble and boosting methods, we constructed a protein-based prediction model, an optimized clinical risk model, and a model combining both. In the derivation cohort (EPIC-Norfolk), we defined a panel of 50 proteins, which outperformed the clinical risk model in the prediction of myocardial infarction [area under the curve (AUC) 0.754 vs. 0.730; P < 0.001] during a median follow-up of 20 years. The clinically more relevant prediction of events occurring within 3 years showed an AUC of 0.732 using the clinical risk model and an AUC of 0.803 for the protein model (P < 0.001). The predictive value of the protein panel was confirmed to be superior to the clinical risk model in the validation cohort (AUC 0.705 vs. 0.609; P < 0.001). CONCLUSION: In a primary prevention setting, a proteome-based model outperforms a model comprising clinical risk factors in predicting the risk of CV events. Validation in a large prospective primary prevention cohort is required to address the value for future clinical implementation in CV prevention.


Assuntos
Doenças Cardiovasculares , Proteômica , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco de Doenças Cardíacas , Humanos , Prevenção Primária , Estudos Prospectivos , Medição de Risco , Fatores de Risco
16.
Cell Stem Cell ; 27(2): 189-190, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763177

RESUMO

Stem cell biologists have been yearning to visualize hematopoietic stem cells (HSCs) in live animals since Kiel et al. (2005) first visualized them in bone cavities. With two recent papers from Christodoulou et al. (2020) and Upadhaya et al. (2020), we can all now see how HSCs behave in their niches!


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais
17.
Am J Dermatopathol ; 42(2): 125-128, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31268927

RESUMO

Histoid leprosy (HL) was originally described by Wade in 1963 and is regarded as a rare variant of lepromatous leprosy (LL). These characteristic clinical lesions are firm, deeply adhered nodules with features reminiscent of dermatofibromas or keloids in a background of apparently healthy skin. The main histopathological findings described are the presence of spindle cell histiocytes immersed in a richly collagenized background, usually forming a nodular pattern of infiltration with sharply delimitation and positive staining for acid-fast bacilli. The classical form of HL lesions should be devoid of foam histiocytes and globi. However, we and other authors noticed that in most of the cases, despite characteristic clinical features, histopathology depicts a mixture of LL and HL patterns. Therefore, we present a case with clinical features similar to HL in which an excisional scalpel biopsy of a nodule demonstrated features of classical LL in the center of the lesion and features of HL in the periphery, highlighting that a proper biopsy technique could enhance the ability of the dermatopathologist to histopathologically diagnose cases of HL. In cases in which HL is clinically suspected, we advocate replacing the usual 4-mm incisional punch biopsy by a broader elliptical scalpel biopsy, encompassing the totality of the lesion whenever possible to achieve a reliable representation of the pathologic process.


Assuntos
Biópsia/métodos , Hanseníase Virchowiana/diagnóstico , Hanseníase Virchowiana/patologia , Feminino , Histiócitos/patologia , Humanos , Adulto Jovem
18.
Cell ; 178(5): 1176-1188.e15, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442406

RESUMO

Adaptive immunity provides life-long protection by generating central and effector memory T cells and the most recently described tissue resident memory T (TRM) cells. However, the cellular origin of CD4 TRM cells and their contribution to host defense remain elusive. Using IL-17A tracking-fate mouse models, we found that a significant fraction of lung CD4 TRM cells derive from IL-17A-producing effector (TH17) cells following immunization with heat-killed Klebsiella pneumonia (Kp). These exTH17 TRM cells are maintained in the lung by IL-7, produced by lymphatic endothelial cells. During a memory response, neither antibodies, γδ T cells, nor circulatory T cells are sufficient for the rapid host defense required to eliminate Kp. Conversely, using parabiosis and depletion studies, we demonstrated that exTH17 TRM cells play an important role in bacterial clearance. Thus, we delineate the origin and function of airway CD4 TRM cells during bacterial infection, offering novel strategies for targeted vaccine design.


Assuntos
Infecções por Klebsiella/imunologia , Células Th17/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Toxina Diftérica/farmacologia , Modelos Animais de Doenças , Feminino , Memória Imunológica , Interleucina-17/genética , Interleucina-17/metabolismo , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/patogenicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th17/citologia , Células Th17/metabolismo
19.
Immunol Rev ; 289(1): 142-157, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977190

RESUMO

Studies over the last decade uncovered overlapping niches for hematopoietic stem cells (HSCs), multipotent progenitor cells, common lymphoid progenitors, and early B cell progenitors. HSC and lymphoid niches are predominantly composed by mesenchymal progenitor cells (MPCs) and by a small subset of endothelial cells. Niche cells create specialized microenvironments through the concomitant production of short-range acting cell-fate determining cytokines such as interleukin (IL)-7 and stem cell factor and the potent chemoattractant C-X-C motif chemokine ligand 12. This type of cellular organization allows for the cross-talk between hematopoietic stem and progenitor cells with niche cells, such that niche cell activity can be regulated by the quality and quantity of hematopoietic progenitors being produced. For example, preleukemic B cell progenitors and preB acute lymphoblastic leukemias interact directly with MPCs, and downregulate IL-7 expression and the production of non-leukemic lymphoid cells. In this review, we discuss a novel model of B cell development that is centered on cellular circuits formed between B cell progenitors and lymphopoietic niches.


Assuntos
Linfócitos B/fisiologia , Quimiocina CXCL12/metabolismo , Células Endoteliais/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Diferenciação Celular , Microambiente Celular , Humanos , Interleucina-7/metabolismo , Linfopoese , Nicho de Células-Tronco
20.
EBioMedicine ; 39: 109-117, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30587458

RESUMO

BACKGROUND: Risk stratification is crucial to improve tailored therapy in patients with suspected coronary artery disease (CAD). This study investigated the ability of targeted proteomics to predict presence of high-risk plaque or absence of coronary atherosclerosis in patients with suspected CAD, defined by coronary computed tomography angiography (CCTA). METHODS: Patients with suspected CAD (n = 203) underwent CCTA. Plasma levels of 358 proteins were used to generate machine learning models for the presence of CCTA-defined high-risk plaques or complete absence of coronary atherosclerosis. Performance was tested against a clinical model containing generally available clinical characteristics and conventional biomarkers. FINDINGS: A total of 196 patients with analyzable protein levels (n = 332) was included for analysis. A subset of 35 proteins was identified predicting the presence of high-risk plaques. The developed machine learning model had fair diagnostic performance with an area under the curve (AUC) of 0·79 ±â€¯0·01, outperforming prediction with generally available clinical characteristics (AUC = 0·65 ±â€¯0·04, p < 0·05). Conversely, a different subset of 34 proteins was predictive for the absence of CAD (AUC = 0·85 ±â€¯0·05), again outperforming prediction with generally available characteristics (AUC = 0·70 ±â€¯0·04, p < 0·05). INTERPRETATION: Using machine learning models, trained on targeted proteomics, we defined two complementary protein signatures: one for identification of patients with high-risk plaques and one for identification of patients with absence of CAD. Both biomarker subsets were superior to generally available clinical characteristics and conventional biomarkers in predicting presence of high-risk plaque or absence of coronary atherosclerosis. These promising findings warrant external validation of the value of targeted proteomics to identify cardiovascular risk in outcome studies. FUND: This study was supported by an unrestricted research grant from HeartFlow Inc. and partly supported by a European Research Area Network on Cardiovascular Diseases (ERA-CVD) grant (ERA CVD JTC2017, OPERATION). Funders had no influence on trial design, data evaluation, and interpretation.


Assuntos
Biomarcadores/sangue , Doença da Artéria Coronariana/diagnóstico por imagem , Proteômica/métodos , Idoso , Área Sob a Curva , Angiografia por Tomografia Computadorizada , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/metabolismo , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA