Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38734995

RESUMO

Bacterial infections are a global health concern, particularly due to the increasing resistance of bacteria to antibiotics. Multi-drug resistance (MDR) is a considerable challenge, and novel approaches are needed to treat bacterial infections. Photodynamic inactivation (PDI) of microorganisms is increasingly recognized as an effective method to inactivate a broad spectrum of bacteria and overcome resistance mechanisms. This study presents the synthesis of a new cationic 5,15-di-imidazolyl porphyrin derivative and the impact of n-octanol/water partition coefficient (logP) values of this class of photosensitizers on PDI efficacy of Escherichia coli. The derivative with logP = -0.5, IP-H-OH2+, achieved a remarkable 3 log CFU reduction of E. coli at 100 nM with only 1.36 J/cm2 light dose at 415 nm, twice as effective as the second-best porphyrin IP-H-Me2+, of logP = -1.35. We relate the rapid uptake of IP-H-OH2+ by E. coli to improved PDI and the very low uptake of a fluorinated derivative, IP-H-CF32+, logP ≈ 1, to its poor performance. Combination of PDI with cinnamaldehyde, a major component of the cinnamon plant known to alter bacteria cell membranes, offered synergic inactivation of E. coli (7 log CFU reduction), using 50 nM of IP-H-OH2+ and just 1.36 J/cm2 light dose. The success of combining PDI with this natural compound broadens the scope of therapies for MDR infections that do not add drug resistance. In vivo studies on a mouse model of wound infection showed the potential of cationic 5,15-di-imidazolyl porphyrins to treat clinically relevant infected wounds.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38675435

RESUMO

Neuropeptide Y (NPY) is one of the most abundant peptides in the central nervous system of mammals and is involved in several physiological processes through NPY Y1, Y2, Y4 and Y5 receptors. Of those, the Y2 receptor has particular relevance for its autoreceptor role in inhibiting the release of NPY and other neurotransmitters and for its involvement in relevant mechanisms such as feeding behaviour, cognitive processes, emotion regulation, circadian rhythms and disorders such as epilepsy and cancer. PET imaging of the Y2 receptor can provide a valuable platform to understand this receptor's functional role and evaluate its potential as a therapeutic target. In this work, we set out to refine the chemical and radiochemical synthesis of the Y2 receptor antagonist N-[11C]Me-JNJ31020028 for in vivo PET imaging studies. The non-radioactive reference compound, N-Me-JNJ-31020028, was synthesised through batch synthesis and continuous flow methodology, with 43% and 92% yields, respectively. N-[11C]Me-JNJ-31020028 was obtained with a radiochemical purity > 99%, RCY of 31% and molar activity of 156 GBq/µmol. PET imaging clearly showed the tracer's biodistribution in several areas of the mouse brain and gut where Y2 receptors are known to be expressed.

3.
Photochem Photobiol Sci ; 22(11): 2607-2620, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37755667

RESUMO

The COVID-19 pandemic exposes our vulnerability to viruses that acquire the ability to infect our cells. Classical disinfection methods are limited by toxicity. Existing medicines performed poorly against SARS-CoV-2 because of their specificity to targets in different organisms. We address the challenge of mitigating known and prospective viral infections with a new photosensitizer for antimicrobial photodynamic therapy (aPDT). Photodynamic inactivation is based on local oxidative stress, which is particularly damaging to enveloped viruses. We synthesized a cationic imidazolyl chlorin that reduced by > 99.999% of the percentage inhibition of amplification of SARS-CoV-2 collected from patients at 0.2 µM concentration and 4 J cm-2. Similar results were obtained in the prevention of infection of human ACE2-expressing HEK293T cells by a pseudotyped lentiviral vector exhibiting the S protein of SARS-CoV-2 at its surface. No toxicity to human epidermal keratinocytes (HaCaT) cells was found under similar conditions. aPDT with this chlorin offers fast and safe broad-spectrum photodisinfection and can be repeated with low risk of resistance.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/química , Desinfecção , Pandemias , Células HEK293 , Estudos Prospectivos , Fotoquimioterapia/métodos , SARS-CoV-2 , Antivirais/farmacologia
4.
Chemistry ; 29(53): e202301442, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37606898

RESUMO

A new fluorinated manganese porphyrin, (Mn-TPP-p-CF3 ) is reported capable of providing, based on the Mn(III)/Mn(II) equilibrium, dual 1 H relaxivity and 19 F NMR response to redox changes. The physical-chemical characterization of both redox states in DMSO-d6 /H2 O evidenced that the 1 H relaxometric and 19 F NMR properties are appropriate for differential redox MRI detection. The Mn(III)-F distance (dMn-F =9.7-10 Å), as assessed by DFT calculations, is well tailored to allow for adequate paramagnetic effect of Mn(III) on 19 F T1 and T2 relaxation times. Mn-TPP-p-CF3 has a reversible Mn(II)/Mn(III) redox potential of 0.574 V vs. NHE in deoxygenated aqueous HEPES/ THF solution. The reduction of Mn(III)-TPP-p-CF3 in the presence of ascorbic acid is slowly, but fully reversed in the presence of air oxygen, as monitored by UV-Vis spectrometry and 19 F NMR. The broad 1 H and 19 F NMR signals of Mn(III)-TPP-p-CF3 disappear in the presence of 1 equivalent ascorbate replaced by a shifted and broadened 19 F NMR signal from Mn(II)-TPP-p-CF3 . Phantom 19 F MR images in DMSO show a MRI signal intensity decrease upon reduction of Mn(III)-TPP-p-CF3 , retrieved upon complete reoxidation in air within ~24 h. 1 H NMRD curves of the Mn(III)/(II)-TPP-p-CF3 chelates in mixed DMSO/water solvent have the typical shape of Mn(II)/Mn(III) porphyrins.

5.
Chem Commun (Camb) ; 59(62): 9457-9468, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37455583

RESUMO

We offer a personal account of the discovery and development of a photosensitizer for photodynamic therapy (PDT) of cancer, from bench to bedside. We emphasize the more chemical aspects of drug discovery and drug development, namely the chemical landscape at the time of the discovery, the breakthrough in the field offered by stable bacteriochlorins, the challenges of synthesising a significant amount of the product with high purity for preclinical studies, the factors that relate molecular structure to pharmacology in PDT, the mechanistic interpretation of preclinical data and the management of unexpected results. Special attention is given to the implications of atropisomerism and immune responses in PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Sulfonamidas/farmacologia , Neoplasias/tratamento farmacológico
6.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903453

RESUMO

Herein we describe the design of natural curcumin ester and ether derivatives and their application as potential bioplasticizers, to prepare photosensitive phthalate-free PVC-based materials. The preparation of PVC-based films incorporating several loadings of newly synthesized curcumin derivatives along with their standard solid-state characterization is also described. Remarkably, the plasticizing effect of the curcumin derivatives in the PVC material was found to be similar to that observed in previous PVC-phthalate materials. Finally, studies applying these new materials in the photoinactivation of S. aureus planktonic cultures revealed a strong structure/activity correlation, with the photosensitive materials reaching up to 6 log CFU reduction at low irradiation intensities.

7.
Chempluschem ; 87(11): e202200228, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36351700

RESUMO

The combination of photodynamic therapy with antibiotics or antimicrobial peptides for inactivation of bacteria is an area of growing interest due to the synergistic effect already observed by many authors. It has been shown that the efficiency of this dual antimicrobial therapy is highly dependent on the structure of the photosensitizer, being tetrapyrrolic macrocycles the ones with most promising results. There are a few review articles in the recent literature describing the main microbiological results concerning this dual inactivation of bacteria, but none of them focus on the synthetic processes of these photosensitizers and their remarkable chemical versatility. Therefore, herein we present an overview on synthetic methodologies for preparation of tetrapyrrolic macrocycles and their conjugates with antibiotics or antimicrobial peptides, for use in dual inactivation of bacteria. This review will be divided in two sections concerning the physical or covalent combinations of PS with antibiotic/cationic peptides, followed by brief critical analysis on their corresponding antimicrobial outcomes.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
8.
Nucl Med Biol ; 114-115: 6-17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36088876

RESUMO

BACKGROUND: Manganese porphyrins have several therapeutic/imaging applications, including their use as radioprotectants (in clinical trials) and as paramagnetic MRI contrast agents. The affinity of porphyrins for lipid bilayers also makes them candidates for cell/liposome labelling. We hypothesised that metalation with the positron emission tomography (PET) radionuclide 52Mn (t1/2 = 5.6 d) would allow long-term in vivo biodistribution studies of Mn-porphyrins, as well as a method to label and track cells/liposomes, but methods for fast and efficient radiolabelling are lacking. RESULTS: Several porphyrins were produced and radiolabelled by addition to neutralised [52Mn]MnCl2 and heating using a microwave (MW) synthesiser, and compared with non-MW heating. MW radiosynthesis allowed >95 % radiochemical yields (RCY) in just 1 h. Conversely, non-MW heating at 70 °C for 1 h resulted in low RCY (0-25 % RCY) and most porphyrins did not reach radiolabelling completion after 24 h. Formation of the 52Mn-complexes were confirmed with radio-HPLC by comparison with their non-radioactive 55Mn counterparts. Following this, several [52Mn]Mn-porphyrins were used to radiolabel liposomes resulting in 75-86 % labelling efficiency (LE). Two lead [52Mn]Mn-porphyrins were taken forward to label MDA-MB-231 cancer cells in vitro, achieving ca. 11 % LE. After 24 h, 32-45 % of the [52Mn]Mn-porphyrins was retained in cells. CONCLUSIONS: In contrast to standard methods, MW heating allows the fast synthesis of [52Mn]Mn-porphyrins with >95 % radiochemical yields that avoid purification. [52Mn]Mn-porphyrins also show promising cell/liposome labelling properties. Our reported technique can potentially be exploited for the in vivo imaging of Mn-porphyrin therapeutics, as well as for the accurate in vivo quantification of Mn-porphyrin MRI agents.


Assuntos
Lipossomos , Porfirinas , Micro-Ondas , Distribuição Tecidual , Radioisótopos , Compostos Radiofarmacêuticos
9.
J Am Chem Soc ; 144(33): 15252-15265, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960892

RESUMO

The intrinsic challenge of large molecules to cross the cell membrane and reach intracellular targets is a major obstacle for the development of new medicines. We report how rotation along a single C-C bond, between atropisomers of a drug in clinical trials, improves cell uptake and therapeutic efficacy. The atropisomers of redaporfin (a fluorinated sulfonamide bacteriochlorin photosensitizer of 1135 Da) are separable and display orders of magnitude differences in photodynamic efficacy that are directly related to their differential cellular uptake. We show that redaporfin atropisomer uptake is passive and only marginally affected by ATP depletion, plasma proteins, or formulation in micelles. The α4 atropisomer, where meso-phenyl sulfonamide substituents are on the same side of the tetrapyrrole macrocycle, exhibits the highest cellular uptake and phototoxicity. This is the most amphipathic atropisomer with a conformation that optimizes hydrogen bonding (H-bonding) with polar head groups of membrane phospholipids. Consequently, α4 binds to the phospholipids on the surface of the membrane, flips into the membrane to adopt the orientation of a surfactant, and eventually diffuses to the interior of the cell (bind-flip mechanism). We observed increased α4 internalization by cells of the tumor microenvironment in vivo and correlated this to the response of photodynamic therapy when tumor illumination was performed 24 h after α4 administration. These results show that properly orientated aryl sulfonamide groups can be incorporated into drug design as efficient cell-penetrating motifs in vivo and reveal the unexpected biological consequences of atropisomerism.


Assuntos
Fotoquimioterapia , Micelas , Fosfolipídeos , Fármacos Fotossensibilizantes , Sulfonamidas/química
10.
J Photochem Photobiol B ; 233: 112499, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689931

RESUMO

The emergence of new microorganisms with resistance to current antimicrobials is one of the key issues of modern healthcare that must be urgently addressed with the development of new molecules and therapies. Photodynamic inactivation (PDI) in combination with antibiotics has been recently regarded as a promising wide-spectrum therapy for the treatment of localized topical infections. However, further studies are required regarding the selection of the best photosensitizer structures and protocol optimization, in order to maximize the efficiency of this synergic interaction. In this paper, we present results that demonstrate the influence of the structure of cationic imidazolyl-substituted photosensitizers and light on the enhancement of ciprofloxacin (CIP) activity, for the inactivation of Escherichia coli. Structure-activity studies have highlighted the tetra cationic imidazolyl porphyrin IP-H-Me4+ at sub-bactericide concentrations (4-16 nM) as the most promising photosensitizer for combination with sub-inhibitory CIP concentration (<0.25 mg/L). An optimized dual phototherapy protocol using this photosensitizer was translated to in vivo studies in mice wounds infected with E. coli. This synergic combination reduced the amount of photosensitizer and ciprofloxacin required for full E. coli inactivation and, in both in vitro and in vivo studies, the combination therapy was clearly superior to each monotherapy (PDI or ciprofloxacin alone). Overall, these findings highlight the potential of cationic imidazolyl porphyrins in boosting the activity of antibiotics and lowering the probability of resistance development, which is essential for a sustainable long-term treatment of infectious diseases.


Assuntos
Infecções por Escherichia coli , Porfirinas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cátions/química , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/uso terapêutico
11.
Molecules ; 27(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35335351

RESUMO

Four stereoisomeric monoether derivatives, based on axially chiral (R)- or (S)-BINOL bearing a chiral (+)- or (-)-neomenthyloxy group were synthesised and fully characterised by NMR spectroscopy and X-ray crystallography. The respective tris-monophosphites were thereof prepared and fully characterised. The coordination ability of the new bulky phosphites with Rh(CO)2(acac), was attested by 31P NMR, which presented a doublet in the range of δ = 120 ppm, with a 1J(103Rh-31P) coupling constant of 290 Hz. The new tris-binaphthyl phosphite ligands were further characterised by DFT computational methods, which allowed us to calculate an electronic (CEP) parameter of 2083.2 cm-1 and an extremely large cone angle of 345°, decreasing to 265° upon coordination with a metal atom. Furthermore, the monophosphites were applied as ligands in rhodium-catalysed hydroformylation of styrene, leading to complete conversions in 4 h, 100% chemoselectivity for aldehydes and up to 98% iso-regioselectivity. The Rh(I)/phosphite catalytic system was also highly active and selective in the hydroformylation of disubstituted olefins, including (E)-prop-1-en-1-ylbenzene and prop-1-en-2-ylbenzene.

12.
Photochem Photobiol Sci ; 20(11): 1497-1545, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34705261

RESUMO

Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.


Assuntos
Controle de Doenças Transmissíveis/métodos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia
14.
Antibiotics (Basel) ; 10(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946390

RESUMO

Lignin has recently attracted the attention of the scientific community, as a suitable raw material for biomedical applications. In this work, acetylated lignin was used to encapsulate five different porphyrins, aiming to preserve their photophysical properties, and for further use as antibacterial treatment. The obtained nanoparticles were physically characterized, through dynamic light scattering size measurement, polydispersity index and zeta potential values. Additionally, the photophysical properties of the nanoparticles, namely UV-vis absorption, fluorescence emission, singlet oxygen production and photobleaching, were compared with those of the free porphyrins. It was found that all the porphyrins were susceptible to encapsulation, with an observed decrease in their fluorescence quantum yield and singlet oxygen production. These nanoparticles were able to exert an effective photodynamic bactericide effect (blue-LED light, 450-460 nm, 15 J/cm2) on Staphylococcus aureus and Escherichia coli. Furthermore, it was achieved a photodynamic bactericidal activity on an encapsulated lipophillic porphyrin, where the free porphyrin failed to diminish the bacterial survival. In this work it was demonstrated that acetylated lignin encapsulation works as a universal, cheap and green material for the delivery of porphyrins, while preserving their photophysical properties.

15.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801316

RESUMO

A pharmacophore model for inhibitors of Escherichia coli's DNA Gyrase B was developed, using computer-aided drug design. Subsequently, docking studies showed that 2,5(6)-substituted benzimidazole derivatives are promising molecules, as they possess key hydrogen bond donor/acceptor groups for an efficient interaction with this bacterial target. Furthermore, 5(6)-bromo-2-(2-nitrophenyl)-1H-benzimidazole, selected as a core molecule, was prepared on a multi-gram scale through condensation of 4-bromo-1,2-diaminobenzene with 2-nitrobenzaldehyde using a sustainable approach. The challenging functionalization of the 5(6)-position was carried out via palladium-catalyzed Suzuki-Miyaura and Buchwald-Hartwig amination cross-coupling reactions between N-protected-5-bromo-2-nitrophenyl-benzimidazole and aryl boronic acids or sulfonylanilines, with yields up to 81%. The final designed molecules (2-(aminophen-2-yl)-5(6)-substituted-1H-benzimidazoles), which encompass the appropriate functional groups in the 5(6)-position according to the pharmacophore model, were obtained in yields up to 91% after acid-mediated N-boc deprotection followed by Pd-catalyzed hydrogenation. These groups are predicted to favor interactions with DNA gyrase B residues Asn46, Asp73, and Asp173, aiming to promote an inhibitory effect.


Assuntos
Benzimidazóis/química , DNA Girase/química , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Paládio/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/antagonistas & inibidores
16.
EJNMMI Radiopharm Chem ; 6(1): 11, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33689056

RESUMO

The neurotracer 6-[18F] FDOPA has been, for many years, a powerful tool in PET imaging of neuropsychiatric diseases, movement disorders and brain malignancies. More recently, it also demonstrated good results in the diagnosis of other malignancies such as neuroendocrine tumours, pheochromocytoma or pancreatic adenocarcinoma.The multiple clinical applications of this tracer fostered a very strong interest in the development of new and improved methods for its radiosynthesis. The no-carrier-added nucleophilic 18F-fluorination process has gained increasing attention, in recent years, due to the high molar activities obtained, when compared with the other methods although the radiochemical yield remains low (17-30%). This led to the development of several nucleophilic synthetic processes in order to obtain the product with molar activity, radiochemical yield and enantiomeric purity suitable for human PET studies.Automation of the synthetic processes is crucial for routine clinical use and compliance with GMP requirements. Nevertheless, the complexity of the synthesis makes the production challenging, increasing the chance of failure in routine production. Thus, for large-scale clinical application and wider use of this radiopharmaceutical, progress in the automation of this complex radiosynthesis is of critical importance.This review summarizes the most recent developments of 6-[18F]FDOPA radiosynthesis and discusses the key issues regarding its automation for routine clinical use.

17.
Front Microbiol ; 11: 606185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281805

RESUMO

The need for alternative strategies to fight bacteria is evident from the emergence of antimicrobial resistance. To that respect, photodynamic antimicrobial chemotherapy steadily rises in bacterial eradication by using light, a photosensitizer and oxygen, which generates reactive oxygen species that may kill bacteria. Herein, we report the encapsulation of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin into acetylated lignin water-dispersible nanoparticles (THPP@AcLi), with characterization of those systems by standard spectroscopic and microscopic techniques. We observed that THPP@AcLi retained porphyrin's photophysical/photochemical properties, including singlet oxygen generation and fluorescence. Besides, the nanoparticles demonstrated enhanced stability on storage and light bleaching. THPP@AcLi were evaluated as photosensitizers against two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and against three Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis. THPP@AcLi were able to diminish Gram-positive bacterial survival to 0.1% when exposed to low white LED light doses (4.16 J/cm2), requiring concentrations below 5 µM. Nevertheless, the obtained nanoparticles were unable to diminish the survival of Gram-negative bacteria. Through transmission electron microscopy observations, we could demonstrate that nanoparticles did not penetrate inside the bacterial cell, exerting their destructive effect on the bacterial wall; also, a high affinity between acetylated lignin nanoparticles and bacteria was observed, leading to bacterial flocculation. Altogether, these findings allow to establish a photodynamic antimicrobial chemotherapy alternative that can be used effectively against Gram-positive topic infections using the widely available natural polymeric lignin as a drug carrier. Further research, aimed to inhibit the growth and survival of Gram-negative bacteria, is likely to enhance the wideness of acetylated lignin nanoparticle applications.

18.
Nanoscale ; 12(40): 20831-20839, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33043332

RESUMO

Carbon nanotubes (CNT) functionalized with siloxane groups were dissolved in polystyrene/tetrahydrofuran to produce thin films that generate broadband and intense ultrasound pulses when excited by pulsed lasers. These films absorb >99% of light in the visible and near-infrared and show no signs of fatigue after thousands of laser pulses. Picosecond laser pulses with fluences of 50 mJ cm-2 generate photoacoustic waves with exceptionally wide bandwidths (170 MHz at -6 dB) and peak pressures >1 MPa several millimeters away from the source. The ability to generate such broadband ultrasound pulses is assigned to the ultrafast dissipation of heat by CNT-siloxanes, and to the formation of very thin photoacoustic sources thanks to the high speed of sound of polystyrene. The wide bandwidths achieved allow for axial resolutions of 8 µm at depths less than 1 mm, similar to the resolution of histology but based on real-time non-invasive methods.

19.
Proc Natl Acad Sci U S A ; 117(37): 22967-22973, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868444

RESUMO

Hospital-acquired infections are a global health problem that threatens patients' treatment in intensive care units, causing thousands of deaths and a considerable increase in hospitalization costs. The endotracheal tube (ETT) is a medical device placed in the patient's trachea to assist breathing and delivering oxygen into the lungs. However, bacterial biofilms forming at the surface of the ETT and the development of multidrug-resistant bacteria are considered the primary causes of ventilator-associated pneumonia (VAP), a severe hospital-acquired infection for significant mortality. Under these circumstances, there has been a need to administrate antibiotics together. Although necessary, it has led to a rapid increase in bacterial resistance to antibiotics. Therefore, it becomes necessary to develop alternatives to prevent and combat these bacterial infections. One possibility is to turn the ETT itself into a bactericide. Some examples reported in the literature present drawbacks. To overcome those issues, we have designed a photosensitizer-containing ETT to be used in photodynamic inactivation (PDI) to avoid bacteria biofilm formation and prevent VAP occurrence during tracheal intubation. This work describes ETT's functionalization with curcumin photosensitizer, as well as its evaluation in PDI against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli A significant photoinactivation (up to 95%) against Gram-negative and Gram-positive bacteria was observed when curcumin-functionalized endotracheal (ETT-curc) was used. These remarkable results demonstrate this strategy's potential to combat hospital-acquired infections and contribute to fighting antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Curcumina/farmacologia , Intubação Intratraqueal/instrumentação , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Curcumina/química , Humanos , Intubação Intratraqueal/efeitos adversos , Pneumonia Associada à Ventilação Mecânica/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
20.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599931

RESUMO

The synthesis and structural modulation of five pro-ligand salts was achieved using alternative sustainable synthetic strategies, the use of microwaves being the method of choice, with an 81% yield and an E factor of 43 for 3d. After complexation with Fe3(CO)12 by direct reaction with the appropriate pro-ligands at 130 °C, a set of iron(II) N-heterocyclic carbene (NHC) complexes were isolated and fully characterized (via 1H and 13C NMR and IR spectroscopy and elemental analysis). The antibacterial activities of the iron(II)-NHC complexes were tested against standard World Health Organization priority bacterial strains: Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922. The results showed a significant effect of the Fe(II)-NHC side-chain on the antibacterial activity against both Gram-negative and Gram-positive bacteria. Among all compounds, the most lipophilic iron complex, 3b, was found to be the most active one, with a minimum inhibitory concentration of 8 µg/mL. Pioneering mechanistic studies suggested an alternative mechanism of action (OH· formation), which opens the way for the development of a new class of antibiotics.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Metano/análogos & derivados , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/efeitos dos fármacos , Compostos Heterocíclicos/química , Radical Hidroxila/química , Imidazóis/química , Ferro/química , Metano/química , Testes de Sensibilidade Microbiana , Espectrofotometria Ultravioleta , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA