Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 10: 334, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894856

RESUMO

The success of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the treatment of hematological malignancies remains hampered by life-threatening chronic graft vs. host disease (cGVHD). Although multifactorial in nature, cGVHD has been associated with imbalances between effector and regulatory T cells (Treg). To further elucidate this issue, we performed a prospective analysis of patients undergoing unrelated donor allo-HSCT after a reduced intensity conditioning (RIC) regimen containing anti-thymocyte globulin (ATG) and the same GVHD prophylaxis, at a single institution. We studied T cell subset homeostasis over a 24-month follow-up after HSCT in a comparative analysis of patients with and without cGVHD. We also quantified naive and memory T cell subsets, proliferation and expression of the apoptosis-related proteins Bcl-2 and CD95. Finally, we assessed thymic function by T cell receptor excision circle (TREC) quantification and T cell receptor (TCR) diversity by TCRVß spectratyping. While the total number of conventional CD4 (Tcon) and CD8 T cells was similar between patient groups, Treg were decreased in cGVHD patients. Interestingly, we also observed divergent patterns of Naive and Stem Cell Memory (SCM) subset recovery in Treg and Tcon compared to CD8. Patients with cGVHD showed impaired recovery of Naive and SCM Tcon and Treg, but significantly increased frequencies and absolute numbers of Naive and SCM were observed in the CD8 pool. Markedly increased EMRA CD8 T cells were also noted in cGVHD. Taken together, these results suggest that Naive, SCM and EMRA CD8 play a role in the emergence of cGHVD. Reduced Naive and recent thymic emigrant Tcon and Treg in cGVHD was likely due to impaired thymic output, as it was accompanied by decreased CD4 TREC and TCR diversity. On the other hand, CD8 TCR diversity was similar between patient groups. Furthermore, no correlation was observed between CD8 TREC content and Naive CD8 numbers, suggesting limited thymic production of Naive CD8 T cells in patients after transplant, especially in those developing cGVHD. The mechanisms behind the opposing patterns of CD4 and CD8 subset cell recovery in cGVHD remain elusive, but may be linked to thymic damage associated with the conditioning regimen and/or acute GVHD.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Células-Tronco/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Soro Antilinfocitário/imunologia , Feminino , Neoplasias Hematológicas/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Memória Imunológica/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Linfócitos T Reguladores/imunologia , Condicionamento Pré-Transplante/métodos , Doadores não Relacionados , Adulto Jovem
2.
PLoS One ; 13(10): e0205108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30281646

RESUMO

Understanding the molecular pathways regulating cardiogenesis is crucial for the early diagnosis of heart diseases and improvement of cardiovascular disease. During normal mammalian cardiac development, collagen and calcium-binding EGF domain-1 (Ccbe1) is expressed in the first and second heart field progenitors as well as in the proepicardium, but its role in early cardiac commitment remains unknown. Here we demonstrate that during mouse embryonic stem cell (ESC) differentiation Ccbe1 is upregulated upon emergence of Isl1- and Nkx2.5- positive cardiac progenitors. Ccbe1 is markedly enriched in Isl1-positive cardiac progenitors isolated from ESCs differentiating in vitro or embryonic hearts developing in vivo. Disruption of Ccbe1 activity by shRNA knockdown or blockade with a neutralizing antibody results in impaired differentiation of embryonic stem cells along the cardiac mesoderm lineage resulting in a decreased expression of mature cardiomyocyte markers. In addition, knockdown of Ccbe1 leads to smaller embryoid bodies. Collectively, our results show that CCBE1 is essential for the commitment of cardiac mesoderm and consequently, for the formation of cardiac myocytes in differentiating mouse ESCs.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Supressoras de Tumor/deficiência , Animais , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Coração/embriologia , Proteína Homeobox Nkx-2.5/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , RNA Interferente Pequeno , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
3.
Dev Dyn ; 247(10): 1135-1145, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30204931

RESUMO

BACKGROUND: Proper coronary vasculature development is essential for late-embryonic and adult heart function. The developmental regulation of coronary embryogenesis is complex and includes the coordinated activity of multiple signaling pathways. CCBE1 plays an important role during lymphangiogenesis, enhancing VEGF-C signaling, which is also required for coronary vasculature formation. However, whether CCBE1 plays a similar role during coronary vasculature development is still unknown. Here, we investigate the coronary vasculature development in Ccbe1 mutant embryos. RESULTS: We show that Ccbe1 is expressed in the epicardium, like Vegf-c, and also in the sinus venosus (SV) at the stages of its contribution to coronary vasculature formation. We also report that absence of CCBE1 in cardiac tissue inhibited coronary growth that sprouts from the SV endocardium at the dorsal cardiac wall. This disruption of coronary formation correlates with abnormal processing of VEGF-C propeptides, suggesting VEGF-C-dependent signaling alteration. Moreover, Ccbe1 loss-of-function leads to the development of defective dorsal and ventral intramyocardial vessels. We also demonstrate that Ccbe1 mutants display delayed and mispatterned coronary artery (CA) stem formation. CONCLUSIONS: CCBE1 is essential for coronary vessel formation, independent of their embryonic origin, and is also necessary for peritruncal vessel growth and proper CA stem patterning. Developmental Dynamics 247:1135-1145, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Vasos Coronários/crescimento & desenvolvimento , Proteínas Supressoras de Tumor/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Vasos Coronários/embriologia , Coração/embriologia , Coração/crescimento & desenvolvimento , Linfangiogênese , Camundongos , Pericárdio/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo
5.
Development ; 145(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29884675

RESUMO

Upon gastrulation, the mammalian conceptus transforms rapidly from a simple bilayer into a multilayered embryo enveloped by its extra-embryonic membranes. Impaired development of the amnion, the innermost membrane, causes major malformations. To clarify the origin of the mouse amnion, we used single-cell labelling and clonal analysis. We identified four clone types with distinct clonal growth patterns in amniotic ectoderm. Two main types have progenitors in extreme proximal-anterior epiblast. Early descendants initiate and expand amniotic ectoderm posteriorly, while descendants of cells remaining anteriorly later expand amniotic ectoderm from its anterior side. Amniogenesis is abnormal in embryos deficient in the bone morphogenetic protein (BMP) signalling effector SMAD5, with delayed closure of the proamniotic canal, and aberrant amnion and folding morphogenesis. Transcriptomics of individual Smad5 mutant amnions isolated before visible malformations and tetraploid chimera analysis revealed two amnion defect sets. We attribute them to impairment of progenitors of the two main cell populations in amniotic ectoderm and to compromised cuboidal-to-squamous transition of anterior amniotic ectoderm. In both cases, SMAD5 is crucial for expanding amniotic ectoderm rapidly into a stretchable squamous sheet to accommodate exocoelom expansion, axial growth and folding morphogenesis.


Assuntos
Âmnio/embriologia , Ectoderma/embriologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Proteína Smad5/metabolismo , Células-Tronco/metabolismo , Âmnio/citologia , Animais , Ectoderma/citologia , Camundongos , Proteína Smad5/genética , Células-Tronco/citologia
6.
Stem Cells Int ; 2012: 987185, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22966238

RESUMO

Tracing the precise developmental origin of amnion and amnion-derived stem cells is still challenging and depends chiefly on analyzing powerful genetic model amniotes like mouse. Profound understanding of the fundamental differences in amnion development in both the disc-shaped primate and human embryo and the cup-shaped mouse embryo is pivotal in particular when sampling amniotic membrane from nonprimate species for isolating candidate amniotic stem cells. The availability of molecular marker genes that are specifically expressed in the amniotic membrane and not in other extraembryonic membranes would be instrumental to validate unequivocally the starting material under investigation. So far such amniotic markers have not been reported. We postulated that bone morphogenetic protein (BMP) target genes are putative amniotic membrane markers mainly because deficiency in one of several components of the BMP signaling cascade in mice has been documented to result in defective development of the early amnion. Comparative gene expression analysis of acknowledged target genes for BMP in different extraembryonic tissues, combined with in situ hybridization, identified Periostin (Postn) mRNA enrichment in amnion throughout gestation. In addition, we identify and propose a combination of markers as transcriptional signature for the different extraembryonic tissues in mouse.

7.
Development ; 139(18): 3343-54, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22912414

RESUMO

The strength and spatiotemporal activity of Nodal signaling is tightly controlled in early implantation mouse embryos, including by autoregulation and feedback loops, and involves secreted and intracellular antagonists. These control mechanisms, which are established at the extra-embryonic/embryonic interfaces, are essential for anterior-posterior patterning of the epiblast and correct positioning of the primitive streak. Formation of an ectopic primitive streak, or streak expansion, has previously been reported in mutants lacking antagonists that target Nodal signaling. Here, we demonstrate that loss-of-function of a major bone morphogenetic protein (BMP) effector, Smad5, results in formation of an ectopic primitive streak-like structure in mutant amnion accompanied by ectopic Nodal expression. This suggests that BMP/Smad5 signaling contributes to negative regulation of Nodal. In cultured cells, we find that BMP-activated Smad5 antagonizes Nodal signaling by interfering with the Nodal-Smad2/4-Foxh1 autoregulatory pathway through the formation of an unusual BMP4-induced Smad complex containing Smad2 and Smad5. Quantitative expression analysis supports that ectopic Nodal expression in the Smad5 mutant amnion is induced by the Nodal autoregulatory loop and a slow positive-feedback loop. The latter involves BMP4 signaling and also induction of ectopic Wnt3. Ectopic activation of these Nodal feedback loops in the Smad5 mutant amnion results in the eventual formation of an ectopic primitive streak-like structure. We conclude that antagonism of Nodal signaling by BMP/Smad5 signaling prevents primitive streak formation in the amnion of normal mouse embryos.


Assuntos
Âmnio/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína Nodal/metabolismo , Linha Primitiva/metabolismo , Proteína Smad5/metabolismo , Âmnio/citologia , Animais , Western Blotting , Proteínas Morfogenéticas Ósseas/genética , Linhagem Celular , Feminino , Humanos , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Camundongos , Proteína Nodal/genética , Gravidez , Linha Primitiva/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad5/genética
8.
Dev Cell ; 22(3): 501-14, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22364862

RESUMO

Gradients of vascular endothelial growth factor (VEGF) induce single endothelial cells to become leading tip cells of emerging angiogenic sprouts. Tip cells then suppress tip-cell features in adjacent stalk cells via Dll4/Notch-mediated lateral inhibition. We report here that Smad1/Smad5-mediated BMP signaling synergizes with Notch signaling during selection of tip and stalk cells. Endothelium-specific inactivation of Smad1/Smad5 in mouse embryos results in impaired Dll4/Notch signaling and increased numbers of tip-cell-like cells at the expense of stalk cells. Smad1/5 downregulation in cultured endothelial cells reduced the expression of several target genes of Notch and of other stalk-cell-enriched transcripts (Hes1, Hey1, Jagged1, VEGFR1, and Id1-3). Moreover, Id proteins act as competence factors for stalk cells and form complexes with Hes1, which augment Hes1 levels in the endothelium. Our findings provide in vivo evidence for a regulatory loop between BMP/TGFß-Smad1/5 and Notch signaling that orchestrates tip- versus stalk-cell selection and vessel plasticity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ciclo Celular/biossíntese , Células Cultivadas , Regulação para Baixo , Proteínas de Homeodomínio/biossíntese , Humanos , Proteína 1 Inibidora de Diferenciação/biossíntese , Proteína 2 Inibidora de Diferenciação/biossíntese , Proteínas Inibidoras de Diferenciação/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína Jagged-1 , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Fisiológica , Fenótipo , Proteínas Serrate-Jagged , Proteína Smad1/genética , Proteína Smad5/genética , Fatores de Transcrição HES-1 , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese
9.
Cytokine Growth Factor Rev ; 22(5-6): 287-300, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22119658

RESUMO

Signaling by the many ligands of the TGFß family strongly converges towards only five receptor-activated, intracellular Smad proteins, which fall into two classes i.e. Smad2/3 and Smad1/5/8, respectively. These Smads bind to a surprisingly high number of Smad-interacting proteins (SIPs), many of which are transcription factors (TFs) that co-operate in Smad-controlled target gene transcription in a cell type and context specific manner. A combination of functional analyses in vivo as well as in cell cultures and biochemical studies has revealed the enormous versatility of the Smad proteins. Smads and their SIPs regulate diverse molecular and cellular processes and are also directly relevant to development and disease. In this survey, we selected appropriate examples on the BMP-Smads, with emphasis on Smad1 and Smad5, and on a number of SIPs, i.e. the CPSF subunit Smicl, Ttrap (Tdp2) and Sip1 (Zeb2, Zfhx1b) from our own research carried out in three different vertebrate models.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Transdução de Sinais
10.
BMC Dev Biol ; 11: 48, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21806820

RESUMO

BACKGROUND: Despite the detailed knowledge obtained over the last decade on the molecular regulation of gastrulation in amniotes, the process of amnion development has been poorly described and illustrated in mice, and conflicting descriptions exist. Understanding the morphogenesis and development not only of the early mouse embryo, but also of its extraembryonic tissues, is crucial for correctly interpreting fate-mapping data and mouse mutants with gastrulation defects. Moreover, the recent isolation from amnion of cells with stem cell features further argues for a better understanding of the process of amnion formation. Here, we revisit the highly dynamic process of amnion formation in the mouse. Amnion development starts early during gastrulation and is intimately related to the formation of the exocoelom and the expansion of the amniotic fold. The authoritative description involves the fusion of two amniotic folds, a big posterior and a smaller anterior fold. We challenged this 'two amniotic folds' model by performing detailed histomorphological analyses of dissected, staged embryos and 3D reconstructions using historical sections. RESULTS: A posterior fold of extraembryonic ectoderm and associated epiblast is formed early during gastrulation by accumulation of extraembryonic mesoderm posterior to the primitive streak. Previously called the "posterior amniotic fold", we rename it the "amniochorionic fold" (ACF) because it forms both amnion and chorion. Exocoelom formation within the ACF seems not to involve apoptosis within the mesoderm. The ACF and exocoelom expand without disrupting the anterior junction of epiblast, extraembryonic ectoderm and visceral endoderm. No separate anterior fold is formed; its absence was confirmed in 3D reconstructions. Amnion and chorion closure is eccentric, close to the anterior margin of the egg cylinder: we name it the "anterior separation point". CONCLUSIONS: Here, we reconcile previous descriptions of amnion formation and provide new nomenclature, as well as an animation, that clarify and emphasize the arrangement of the tissues that contribute to amnion development and the dynamics of the process. According to our data, the amnion and the chorion are formed by a single amniochorionic fold initiated posteriorly. Finally, we give an overview on mutant mouse models with impaired amnion development.


Assuntos
Âmnio/embriologia , Córion/embriologia , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Camundongos , Modelos Animais , Mutação
11.
Int J Dev Biol ; 54(5): 761-77, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20446274

RESUMO

A common characteristic of mammals is the development of extraembryonic supporting tissues and organs that are required for embryonic implantation, survival and development in utero. The amnion is the innermost extraembryonic membrane that eventually surrounds the fetus of amniotes, and contains the amniotic fluid. Next to its function in in utero development, the amnion has been shown to have an important potential for clinical applications. It is mainly used as a dressing to stimulate healing in skin and ocular wounds. Moreover, cells derived from the amniotic membrane and amniotic fluid have been reported to possess stem cell features, like pluripotent differentiation ability. Little is known about the early development of this membrane in humans. The mouse is a powerful genetic model organism that can be used to address the dynamics and the developmental origin of amnion and amnion-derived stem cells. Here, we discuss some fundamental differences in amnion development in the disc-shaped primate embryo and in the cup-shaped mouse embryo. We emphasize the consequences that this may have on the derivation of amniotic "stem" cells. After revision of the different isolation procedures of amniotic (fluid) derived "stem" cells from rodents, we reveal striking differences in the sources used to derive these cells across studies. The profound differences in the development of the extraembryonic membranes and cavities between primates and rodents may result in comparing cell types of different developmental origins, eventually leading to missinterpretations.


Assuntos
Âmnio/citologia , Linhagem da Célula , Células-Tronco/citologia , Âmnio/embriologia , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Humanos , Camundongos , Modelos Biológicos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA