Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
G Ital Dermatol Venereol ; 145(4): 477-89, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20823791

RESUMO

In 2002, the first documented case of a vancomycin-resistant S. aureus strain (MIC>or=32 microg/mL) was reported. Nowadays approximately 20% of S. aureus isolates in Europe are reported as methicillin-resistant. Besides bacteria infections, the emergence of fungal infections has increased considerably due factors such as immunosuppressive medications, broad-spectrum antibiotics, neutropenia and HIV infections. These tremendous effects underline the importance and the urgency to develop new alternative treatment approaches that are effective against infections caused by multi-resistant pathogens. Photodynamic inactivation of microorganisms (PDIM) is considered as a new approach, which utilizes a photoactive dye, oxygen and visible light to generate reactive oxygen species, which damage irreversible the pathogens during illumination. Cutaneous diseases caused by methicillin-resistant S. aureus or by fungal species are ideally suited to the treatment by PDIM for eradicating localized infections and for modulating wound healing due to the ability to deliver photosensitizer and light with topical application. The challenge of PDIM is to find a therapeutic window in vivo where multi-resistant microorganisms can be killed efficiently, thereby not harming the surrounding tissue or disturbing the residual bacteria-flora of the tissue. Different chemical classes of photosensitizers have demonstrate their potential to photoinactive Gram(+), Gram(-) and fungal cells. This review will focus on general photobiological and photochemical aspects of microbial inactivation by the photodynamic effect as well as to summarize the current knowledge about the possible application modalities of PDIM on localized infectious diseases in dermatology.


Assuntos
Fotoquimioterapia , Dermatopatias Infecciosas/tratamento farmacológico , Humanos , Mucosa/microbiologia , Pele/microbiologia
2.
Drug News Perspect ; 23(3): 167-74, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20440418

RESUMO

The emerging increase of antibiotic resistance constitutes an important risk to human health. Two million patients acquire nosocomial infections in U.S. hospitals each year. Of these infections, 60% involve resistant bacteria. In the last decade, only a few new antibiotics with new mechanisms of action were approved by the FDA, but additional costs for preventing the spread of bacteria, side effects and resistance may limit their long-term usefulness. Therefore, the number of therapeutic options is limited and necessitates exploration of novel antibacterial agents/approaches to treat hospital- and community-acquired infections. The challenge in antibacterial research is to find appropriate structurally novel antibacterial agents inhibiting bacterial targets. The XF drug series, having a dicationic porphyrin structure, which is distinct from all other known antibiotic classes, are rapidly active against a broad range of bacteria. Another new strategy is called photodynamic inactivation of bacteria (PDIB), which utilizes visible light in combination with photosensitizing molecules to efficiently kill bacteria via reactive oxygen species. The XF drugs act additionally as photosensitizers to inactivate bacteria upon light activation. This review summarizes the efficacy of the XF series and describes it as a new class of antibacterial agents or as new photo-sensitizers.


Assuntos
Antibacterianos , Infecção Hospitalar , Bactérias , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Humanos , Fármacos Fotossensibilizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA