Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399679

RESUMO

The development of microbial biofilms increases the survival of microorganisms in the extreme conditions of ecosystems contaminated with components of liquid radioactive waste (LRW) and may contribute to the successful bioremediation of groundwater. The purpose of this work was to compare the composition of the microorganisms and the exopolysaccharide matrix of the biofilms formed on sandy loams collected at the aquifer from a clean zone and from a zone with nitrate and radionuclide contamination. The aquifer is polluted from the nearby surface repository for liquid radioactive waste (Russia). The phylogenetic diversity of prokaryotes forming biofilms on the sandy loams' surface was determined during 100 days using high-throughput sequencing of the V4 region of the 16S rRNA genes. Scanning electron microscopy was used to study the development of microbial biofilms on the sandy loams. The ratio of proteins and carbohydrates in the biofilms changed in the course of their development, and the diversity of monosaccharides decreased, depending on the contamination of the sites from which the rocks were selected. The presence of pollution affects biofilm formation and EPS composition along with the dominant taxa of microorganisms and their activity. Biofilms establish a concentration gradient of the pollutant and allow the microorganisms involved to effectively participate in the reduction of nitrate and sulfate; they decrease the risk of nitrite accumulation during denitrification and suppress the migration of radionuclides. These biofilms can serve as an important barrier in underground water sources, preventing the spread of pollution. Pure cultures of microorganisms capable of forming a polysaccharide matrix and reducing nitrate, chromate, uranyl, and pertechnetate ions were isolated from the biofilms, which confirmed the possibility of their participation in the bioremediation of the aquifer from nonradioactive waste components and the decrease in the radionuclides' migration.

2.
Int J Biol Macromol ; 253(Pt 7): 127546, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37863146

RESUMO

The aim of this work was to examine the structure and gene cluster of O-OPS of S. xiamenensis strain DCB-2-1 and survey its conceivability for chelating uranyl, chromate and vanadate ions from solution. O-polysaccharide (OPS, O-antigen) was isolated from the lipopolysaccharide of Shewanella xiamenensis DCB-2-1 and studied by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and sugar analysis. The following structure of the brunched pentasaccharide was established: where d-ß-GlcpA(d-Ala) is d-glucuronic acid acylated with NH group of d-Ala. The OPS structure established is unique among known bacterial polysaccharide structures. Interestingly, that dN-(d-glucuronoyl)-d-alanine derivative is not found in bacterial polysaccharides early. The O-antigen gene cluster of Shewanella xiamenensis strain DCB-2-1 has been sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in agreement with the OPS structure. Based on the analysis of the IR spectra of the isolated polysaccharide DCB-2-1 and the products of its interaction with UO2(NO3)2 ∗ 6H2O, NH4VO3 and K2Cr2O7, a method of binding them can be proposed. Laboratory experiments show that the use of polysaccharide can be effective in removing uranyl, chromate and vanadate from solution.


Assuntos
Escherichia coli , Antígenos O , Sequência de Carboidratos , Antígenos O/genética , Antígenos O/química , Escherichia coli/genética , Amidas , Cromatos , Vanadatos , Família Multigênica , Ácido Glucurônico
3.
Int J Biol Macromol ; 253(Pt 4): 126993, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37739281

RESUMO

Glycoproteins, in which polysaccharides are usually attached to proteins, are an important class of biomolecules that are widely used as therapeutic agents in clinical treatments for decades. Uropathogenic Escherichia coli (UPEC) O21 has been identified as a serogroup that induces urinary tract infections, with a global increasing number among women and young children. Therefore, there is an urgent need to establish protective vaccines against UPEC infection. Herein, we engineered non-pathogenic E. coli MG1655 to achieve robust, cost-effective de novo biosynthesis of O21 O-antigen polysaccharide-based glycoprotein against UPEC O21. Specifically, this glycoengineered E. coli MG1655 was manipulated for high-efficient glucose-glycerol co-utilization and for the gene cluster installation and O-glycosylation machinery assembly. The key pathways of UDP-sugar precursors were also strengthened to enforce more carbon flux towards the glycosyl donors, which enhanced the glycoprotein titer by 5.6-fold. Further optimization of culture conditions yielded glycoproteins of up to 35.34 mg/L. Glycopeptide MS confirmed the preciset biosynthesis of glycoprotein. This glycoprotein elicited antigen-specific IgG immune responses and significantly reduced kidney and bladder colonization. This bacterial cell-based glyco-platform and optimized strategies can provide a guideline for the biosynthesis of other value-added glycoproteins.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Criança , Feminino , Humanos , Pré-Escolar , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , Antígenos O/genética , Antígenos O/metabolismo , Proteínas de Escherichia coli/metabolismo , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia , Glicoproteínas/genética , Glicoproteínas/metabolismo
4.
Biochemistry (Mosc) ; 88(2): 202-210, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37072328

RESUMO

The polysaccharide capsule surrounding bacterial cell plays an important role in pathogenesis of infections caused by the opportunistic pathogen Acinetobacter baumannii by providing protection from external factors. The structures of the capsular polysaccharide (CPS) produced by A. baumannii isolates and the corresponding CPS biosynthesis gene clusters are highly diverse, although many of them are related. Many types of A. baumannii CPSs contain isomers of 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acid (DTNA). Three of these isomers, namely acinetaminic acid (l-glycero-l-altro isomer), 8-epiacinetaminic acid (d-glycero-l-altro isomer), and 8-epipseudaminic acid (d-glycero-l-manno isomer), have not been found so far in naturally occurring carbohydrates from other species. In A. baumannii CPSs, DTNAs carry N-acyl substituents at positions 5 and 7; in some CPSs, both N-acetyl and N-(3-hydroxybutanoyl) groups are present. Remarkably, pseudaminic acid carries the (R)-isomer and legionaminic acid carries the (S)-isomer of the 3-hydroxybutanoyl group. The review addresses the structure and genetics of biosynthesis of A. baumannii CPSs containing di-N-acyl derivatives of DTNA.


Assuntos
Acinetobacter baumannii , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Cápsulas Bacterianas/química , Família Multigênica
5.
Carbohydr Res ; 523: 108726, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36446189

RESUMO

A structurally diverse capsular polysaccharide (CPS) in the outer cell envelope plays an important role in the virulence of the important bacterial pathogen, Acinetobacter baumannii. More than 75 different CPS structures have been determined for the species to date, and many CPSs include isomers of a higher sugar, namely 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acid. Recently, a novel isomer having the d-glycero-l-manno configuration (5,7-di-N-acetyl-8-epipseudaminic acid; 8ePse5Ac7Ac) has been identified in the CPS from A. baumannii clinical isolate RES-546 [Carbohydr. Res. 513 (2022) 108,531]. Here, the complete chemical structure of this CPS, designated K135, was elucidated. The CPS was found to have a branched tetrasaccharide K unit and to include the higher sugar as part of a 8ePse5Ac7Ac-(2 â†’ 6)-α-Gal disaccharide branching from a →3)-α-D-GlcpNAc-(1 â†’ 3)-ß-D-GlcpNAc-(1→ main chain. Assignment of glycosyltransferases encoded by the CPS biosynthesis gene cluster in the RES-546 genome enabled the first sugar of the K unit, and hence the topology of the K135 CPS, to be determined.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Polissacarídeos/análise , Glicosiltransferases/genética , Família Multigênica , Açúcares , Polissacarídeos Bacterianos/química
6.
Carbohydr Res ; 521: 108650, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35998422

RESUMO

A halotolerant hydrocarbon-oxidizing bacterium Halomonas titanicae strain TAT1 was isolated from a petroleum reservoir. The O-polysaccharide (O-antigen) was isolated from the lipopolysaccharide of H. titanicae TAT1 and studied by component analyses and 1D and 2D NMR spectroscopy. The following structure of the repeating linear pentasaccharide O-unit, containing only aminosugars, was established: →4)-ß-d-GlcpNAc3NAcA-(1 â†’ 4)-ß-d-GlcpNAc3NAcA-(1 â†’ 6)-α-d-GlcpNAc-(1 â†’ 4)-ß-d-GlcpNAc3NAcA-(1 â†’ 6)-α-d-GlcpNAc-(→, where d-GlcNAc3NAcA indicates 2,3-diacetamido-2,3-dideoxy-d-glucuronic acid. The O-antigen gene cluster was identified in the genome of H. titanicae TAT1 and compared with available database sequences. The genes revealed in the O-antigen gene cluster and the assigned functions of putative proteins were consistent with the established polysaccharide structure.


Assuntos
Antígenos O , Petróleo , Sequência de Carboidratos , Glucuronatos , Ácido Glucurônico , Halomonas , Lipopolissacarídeos/química , Família Multigênica , Antígenos O/química
7.
Carbohydr Res ; 519: 108612, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35779303

RESUMO

The O-polysaccharide (OPS) was isolated by mild acid degradation of the lipopolysaccharide of Enterobacter cloacae G2559 and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the branched pentasaccharide repeating unit was established. The O-antigen gene cluster of Enterobacter cloacae G2559 was sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in full agreement with the O-antigen structure.


Assuntos
Enterobacter cloacae , Antígenos O , Sequência de Carboidratos , Enterobacter cloacae/química , Lipopolissacarídeos/química , Família Multigênica , Antígenos O/química
8.
Carbohydr Res ; 513: 108531, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35245711

RESUMO

A structurally diverse capsular polysaccharide that surrounds the bacterial cell plays an important role in virulence of Acinetobacter baumannii, a cause of nosocomial infections worldwide. Various isomers of 5,7-diacylamido-3,5,7,9-tetradeoxynon-2-ulosonic acid have been identified as components of bacterial polysaccharides. In this work, we report on the identification of a new isomer having the d-glycero-l-manno configuration (8-epipseudaminic acid) in the capsular polysaccharide of A. baumannii Res546. The higher sugar was isolated by Smith degradation of the polysaccharide followed by mild acid hydrolysis and identified by a comparison with all isomers using NMR spectroscopy and optical rotation.


Assuntos
Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Polissacarídeos Bacterianos/química
9.
Int J Biol Macromol ; 193(Pt B): 1294-1300, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34757131

RESUMO

Whole genome sequence from Acinetobacter baumannii isolate Ab-46-1632 reveals a novel KL144 capsular polysaccharide (CPS) biosynthesis gene cluster, which carries genes for d-glucuronic acid (D-GlcA) and l-rhamnose (l-Rha) synthesis. The CPS was extracted from Ab-46-1632 and studied by 1H and 13C NMR spectroscopy, including a two-dimensional 1H,13C HMBC experiment and Smith degradation. The CPS was found to have a hexasaccharide repeat unit composed of four l-Rhap residues and one residue each of d-GlcpA and N-acetyl-d-glucosamine (D-GlcpNAc) consistent with sugar synthesis genes present in KL144. The K144 CPS structure was established and found to be related to those of A. baumannii K55, K74, K85, and K86. A comparison of the corresponding gene clusters to KL144 revealed a number of shared glycosyltransferase genes correlating to shared glycosidic linkages in the structures. One from the enzymes, encoded by only KL144 and KL86, is proposed to be a novel multifunctional rhamnosyltransfaerase likely responsible for synthesis of a shared α-l-Rhap-(1 â†’ 2)-α-L-Rhap-(1 â†’ 3)-L-Rhap trisaccharide fragment in the K144 and K86 structures.


Assuntos
Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Polissacarídeos Bacterianos/genética , Ligação Genética/genética , Glicosiltransferases/genética , Espectroscopia de Ressonância Magnética/métodos , Família Multigênica/genética , Sequenciamento Completo do Genoma/métodos
10.
Carbohydr Res ; 510: 108440, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619615

RESUMO

The O-polysaccharide (OPS) was isolated by mild acid degradation of the lipopolysaccharide of Enterobacter cloacae G3422 and studied by chemical methods, including sugar analyses, Smith degradation, and solvolysis with anhydrous trifluoroacetic acid, along with 1H and 13C NMR spectroscopy. The following structure of the branched tetrasaccharide repeating unit was established: The O-antigen gene cluster of Enterobacter cloacae G3422 was sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in a good agreement with the O-antigen structure.


Assuntos
Enterobacter cloacae/química , Antígenos O/química , Antígenos O/genética , Configuração de Carboidratos , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Família Multigênica
11.
Carbohydr Res ; 508: 108392, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274818

RESUMO

The O-antigen (O-polysaccharide) is an essential component of lipopolysaccharide on the surface of Gram-negative bacteria and plays an important role in interaction with host organisms. In this study, we investigated the chemical structure and characterized the gene cluster of Enterobacter cloacae K7 O-antigen. As judged by sugar analyses along with NMR spectroscopy data, E. cloacae K7 antigen has a tetrasaccharide O-unit with the following structure: →8)-ß-Psep5Ac7Ac-(2 â†’ 2)-ß-l-Rhap-(1 â†’ 4)-α-l-Rhap-(1 â†’ 3)-α-d-Galp-(1→ The O-antigen gene cluster of E. cloacae K7 between conserved genes galF and gnd was sequenced. Most genes necessary for the O-antigen synthesis were found in the cluster and their functions were tentatively assigned by comparison with sequences in the available databases.


Assuntos
Antígenos O , Ácidos Siálicos , Família Multigênica
12.
Carbohydr Res ; 504: 108306, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33930760

RESUMO

O-polysaccharide (O-antigen, OPS) was isolated from the lipopolysaccharide of Pseudomonas veronii SHC-8-1 and studied by component analyses and 1D and 2D NMR spectroscopy. The following structure of the O-polysaccharide was established: where QuipNAc4N(dHh) is 2,4-diamino-2,4,6-trideoxy-dglucose (Bacillosamine) in which N-2 is acetylated and N-4 is acylated with 3,5-dihydroxyhexanoic acid (dHh). The O-antigen gene cluster of Pseudomonas veronii SHC-8-1 has been sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in agreement with the OPS structure.


Assuntos
Antígenos O , Pseudomonas , Família Multigênica
13.
Carbohydr Res ; 498: 108154, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33197700

RESUMO

The O-polysaccharide (O-antigen) of Escherichia coli SDLZB008 was isolated from the lipopolysaccharide and studied by sugar analyses along with 1H and 13C NMR spectroscopy. The following structure of the branched pentasaccharide repeating unit was established, which is unique among the known structures of bacterial polysaccharides: The O-antigen gene cluster of E. coli SDLZB008 has been sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in full agreement with the O-polysaccharide structure.


Assuntos
Escherichia coli/química , Escherichia coli/genética , Família Multigênica/genética , Antígenos O/química , Antígenos O/genética , Sequência de Carboidratos
14.
Int J Biol Macromol ; 165(Pt B): 2197-2204, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33058985

RESUMO

A denitrifying bacterium Pseudomonas veronii A-6-5 was isolated from a deep aquifer contaminated with nitrates and uranium. The O-polysaccharide (OPS) was isolated by mild acid degradation of the lipopolysaccharide of P. veronii A-6-5 and studied using sugar analysis and 1D and 2D 1H and 13C NMR spectroscopy. The trisaccharide O-repeating unit was found to have the following structure: [Formula: see text] [Formula: see text] where Hb is 3-hydroxybutanoyl. The genome of P. veronii A-6-5 was sequenced and a respective OPS gene cluster was identified. Functions of the proteins encoded in the gene cluster, including the enzymes involved in the O-polysaccharide biosynthesis and glycosyl transferases, were putatively assigned by comparison with available database sequences. Formation of a new coordination bond between uranyl and the O-polysaccharide from P. veronii A-6-5 was demonstrated using FTIR spectroscopy; it may affect uranyl migration in the groundwaters due to its immobilization on microbial biofilms. Applied importance of this work is that the structure of the O-polysaccharide of a strain isolated from uranium-contaminated groundwater was determined and the character of interaction between the polysaccharide and the uranyl ion was established. The data obtained are of importance for development of the biotechnologies for treatment of uranium-contaminated groundwater and activated sludge.


Assuntos
Família Multigênica , Antígenos O/química , Antígenos O/genética , Pseudomonas/química , Urânio/isolamento & purificação , Biodegradação Ambiental , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Genoma Bacteriano , Conformação Molecular , Monossacarídeos/química , Espectroscopia de Prótons por Ressonância Magnética , Pseudomonas/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Urânio/química
15.
Carbohydr Res ; 497: 108149, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32979627

RESUMO

The structure of the O-polysaccharide of an aerobic halophilic bacterium Salinicola salarius HO-14 isolated from a heavy oil reservoir with highly mineralized water was determined. The neutral O-polysaccharide of strain HO-14 was isolated from the lipopolysaccharide and studied by sugar analysis and NMR spectroscopy. The linear tetrasaccharide repeating unit was found to have the following structure: →2)-α-l-Rhap-(1 â†’ 3)-ß-l-Rhap-(1 â†’ 2)-α-l-Rhap-(1 â†’ 2)-α-d-Manp-(1→.


Assuntos
Halomonadaceae/química , Antígenos O/química , Configuração de Carboidratos , Sequência de Carboidratos , Modelos Moleculares , Água/química
16.
FEMS Microbiol Rev ; 44(6): 655-683, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-31778182

RESUMO

Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/química , Escherichia coli/genética , Antígenos O/química , Antígenos O/genética , Proteínas de Escherichia coli/química , Evolução Molecular , Variação Genética
17.
Carbohydr Res ; 484: 107766, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31422158

RESUMO

The O-polysaccharide (O-antigen, OPS) of Vibrio cholerae O68 was studied using chemical analyses and 1D and 2D NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the OPS was established: where Dhpa indicates (2S,4R)-2,4-dihydroxypentanoic acid existing mainly in the form of 1,4-lactone. Recently, (2R,4S)- and (2R,4R)-isomers of Dhpa have been found in the OPS of Providencia alcalifaciens O8 and O31, respectively. Functions of genes in the O-antigen gene cluster of Vibrio cholerae O68 were predicted according to the OPS structure established. These data provide a molecular basis for classification of V. cholerae strains.


Assuntos
Antígenos O/química , Antígenos O/genética , Vibrio cholerae/genética , Sequência de Carboidratos , Genoma Bacteriano , Família Multigênica , Ácidos Pentanoicos/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Providencia/genética , Providencia/metabolismo , Vibrio cholerae/classificação , Vibrio cholerae/metabolismo , Sequenciamento Completo do Genoma
18.
Carbohydr Res ; 474: 67-71, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30763794

RESUMO

The O-polysaccharide (O-antigen) of Vibrio cholerae O14 was studied using chemical analyses and 1D and 2D NMR spectroscopy. The following structure of the repeating unit of the O-antigen was established: where GlcpN(SHb) indicates 2-deoxy-2-[(S)-3-hydroxybutanoylamino]-d-glucose. We found that Vibrio cholerae O14 is similar to that of O-polysaccharide of Azospirillum brasilense S17, which has been reported earlier. Moreover, we predicted functions of all the genes in the O-antigen gene cluster according to the structure established. Our study enriches the existing O-antigen database of Vibrio cholerae, and further facilitates the bacterial serotype identification.


Assuntos
Amino Açúcares/análise , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Antígenos O/genética , Vibrio cholerae/genética , Amino Açúcares/química , Amino Açúcares/metabolismo , Azospirillum brasilense/química , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Sequência de Carboidratos , Ressonância Magnética Nuclear Biomolecular , Antígenos O/análise , Antígenos O/química , Antígenos O/metabolismo , Sorotipagem , Vibrio cholerae/química , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade
19.
Carbohydr Res ; 472: 98-102, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530139

RESUMO

O-polysaccharide (O-antigen) was isolated from the lipopolysaccharide of Vibrio cholerae O100 and studied by component analyses and 1D and 2D NMR spectroscopy. The following structure of the O-polysaccharide was established: →3)-ß-d-QuipNAc4N(dHh)-(1 → 3)-α-d-Fucp4N(RHb)-(1 → 3)-α-l-FucpNAc-(1→ where Hb and dHh indicate 3-hydroxybutanoyl and 3,5-dihydroxyhexanoyl, respectively. The O-antigen gene cluster of V. cholerae O100 has been sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in agreement with the OPS structure.


Assuntos
Antígenos O/química , Antígenos O/genética , Análise de Sequência de DNA/métodos , Vibrio cholerae/metabolismo , Amino Açúcares/química , Sequência de Carboidratos , Modelos Moleculares , Anotação de Sequência Molecular , Família Multigênica , Ressonância Magnética Nuclear Biomolecular , Vibrio cholerae/química , Vibrio cholerae/genética
20.
Carbohydr Res ; 465: 1-3, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-29864581

RESUMO

Mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O57 afforded an O-polysaccharide, which was isolated by gel permeation chromatography (GPC) and studied by sugar analysis, Smith degradation and solvolysis with trifluoroacetic acid, along with 2D 1H and 13C NMR spectroscopy. The O-polysaccharide was found to contain d-Glc, d-Gal, d-GalA, d-GlcNAc, and l-FucNAc, as well as O-acetyl groups. Smith degradation of the O-deacetylated polysaccharide destroyed side-branch ß-Glсp and α-GalpA to give a modified linear polysaccharide. Solvolysis cleaved selectively the linkage of α-l-FucpNAc to give a pentasaccharide corresponding to the O-polysaccharide repeat. A comparison of the NMR spectra of the initial and O-deacetylated polysaccharides showed that α-GalpA is non-stoichiometrically O-acetylated at position either 2 (∼30%) or 3 (∼40%). The following structure of the O-polysaccharide was established, which is unique among known bacterial polysaccharide structures.


Assuntos
Escherichia coli/química , Polissacarídeos Bacterianos/química , Configuração de Carboidratos , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA