Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 36(4): 109429, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320344

RESUMO

Patient-derived tumor organoids (TOs) are emerging as high-fidelity models to study cancer biology and develop novel precision medicine therapeutics. However, utilizing TOs for systems-biology-based approaches has been limited by a lack of scalable and reproducible methods to develop and profile these models. We describe a robust pan-cancer TO platform with chemically defined media optimized on cultures acquired from over 1,000 patients. Crucially, we demonstrate tumor genetic and transcriptomic concordance utilizing this approach and further optimize defined minimal media for organoid initiation and propagation. Additionally, we demonstrate a neural-network-based high-throughput approach for label-free, light-microscopy-based drug assays capable of predicting patient-specific heterogeneity in drug responses with applicability across solid cancers. The pan-cancer platform, molecular data, and neural-network-based drug assay serve as resources to accelerate the broad implementation of organoid models in precision medicine research and personalized therapeutic profiling programs.


Assuntos
Neoplasias/patologia , Organoides/patologia , Medicina de Precisão , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fluorescência , Genômica , Antígenos HLA/genética , Humanos , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Neoplasias/genética , Redes Neurais de Computação , Transcriptoma/genética
2.
Nat Biotechnol ; 37(11): 1351-1360, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31570899

RESUMO

Genomic analysis of paired tumor-normal samples and clinical data can be used to match patients to cancer therapies or clinical trials. We analyzed 500 patient samples across diverse tumor types using the Tempus xT platform by DNA-seq, RNA-seq and immunological biomarkers. The use of a tumor and germline dataset led to substantial improvements in mutation identification and a reduction in false-positive rates. RNA-seq enhanced gene fusion detection and cancer type classifications. With DNA-seq alone, 29.6% of patients matched to precision therapies supported by high levels of evidence or by well-powered studies. This proportion increased to 43.4% with the addition of RNA-seq and immunotherapy biomarker results. Combining these data with clinical criteria, 76.8% of patients were matched to at least one relevant clinical trial on the basis of biomarkers measured by the xT assay. These results indicate that extensive molecular profiling combined with clinical data identifies personalized therapies and clinical trials for a large proportion of patients with cancer and that paired tumor-normal plus transcriptome sequencing outperforms tumor-only DNA panel testing.


Assuntos
Genômica/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA