Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
mBio ; 15(4): e0312923, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477472

RESUMO

The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here, we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid interface were used to model upper respiratory infection and compared to cell lines derived from human lung epithelia. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses, including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation, and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN-stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper respiratory tract and least favorable in the lower respiratory cell line, and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals. IMPORTANCE: Comparative analysis of infections by SARS-CoV-2 ancestral virus and variants of concern, including Alpha, Beta, Delta, and Omicron, indicated that variants were selected for efficiency in replication. In infections of patient-derived primary nasal cultures grown at air-liquid interface to model upper respiratory infection, Omicron reached the highest titers at early time points, a finding that was confirmed by parallel population sampling studies. While all infections overcame dsRNA-mediated host responses, infections with Omicron induced the strongest interferon and interferon-stimulated gene response. In both primary nasal cultures and lower respiratory cell line, infections by Delta were most damaging to the cells as indicated by syncytia formation, loss of cell barrier integrity, and nasal ciliary function.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Linhagem Celular , Interferons
2.
J Infect Dis ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950884

RESUMO

BACKGROUND: Annual influenza vaccination is recommended for older adults but repeated vaccination with standard-dose influenza vaccine has been linked to reduced immunogenicity and effectiveness, especially against A(H3N2) viruses. METHODS: Community-dwelling Hong Kong adults aged 65-82 years were randomly allocated to receive 2017/18 standard-dose quadrivalent, MF59-adjuvanted trivalent, high-dose trivalent, and recombinant-HA quadrivalent vaccination. Antibody response to unchanged A(H3N2) vaccine antigen was compared among participants with and without self-reported prior year (2016/17) standard-dose vaccination. RESULTS: Mean fold rise (MFR) in antibody titers from Day 0 to Day 30 by hemagglutination inhibition and virus microneutralization assays were lower among 2017/18 standard-dose and enhanced vaccine recipients with (range, 1.7-3.0) vs. without (range, 4.3-14.3) prior 2016/17 vaccination. MFR was significantly reduced by about one half to four fifths for previously vaccinated recipients of standard-dose and all three enhanced vaccines (ß range, 0.21-0.48). Among prior-year vaccinated older adults, enhanced vaccines induced higher 1.43 to 2.39-fold geometric mean titers and 1.28 to 1.74-fold MFR vs. standard-dose vaccine by microneutralization assay. CONCLUSIONS: In the context of unchanged A(H3N2) vaccine strain, prior-year vaccination was associated with reduced antibody response among both standard-dose and enhanced influenza vaccine recipients. Enhanced vaccines improved antibody response among older adults with prior-year standard-dose vaccination.

3.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662273

RESUMO

The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid-interface (ALI) were used to model upper-respiratory infection and human lung epithelial cell lines used to model lower-respiratory infection. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell-barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper-respiratory system and least-favorable in the lower-respiratory cell line; and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals.

4.
Proc Natl Acad Sci U S A ; 120(33): e2304750120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549267

RESUMO

There has long been controversy over the potential for asymptomatic cases of the influenza virus to have the capacity for onward transmission, but recognition of asymptomatic transmission of COVID-19 stimulates further research into this topic. Here, we develop a Bayesian methodology to analyze detailed data from a large cohort of 727 households and 2515 individuals in the 2009 pandemic influenza A(H1N1) outbreak in Hong Kong to characterize household transmission dynamics and to estimate the relative infectiousness of asymptomatic versus symptomatic influenza cases. The posterior probability that asymptomatic cases [36% of cases; 95% credible interval (CrI): 32%, 40%] are less infectious than symptomatic cases is 0.82, with estimated relative infectiousness 0.57 (95% CrI: 0.11, 1.54). More data are required to strengthen our understanding of the contribution of asymptomatic cases to the spread of influenza.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Teorema de Bayes , COVID-19/epidemiologia , Surtos de Doenças
6.
NPJ Vaccines ; 8(1): 21, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36804941

RESUMO

In randomized controlled trials of influenza vaccination, 550 children received trivalent-inactivated influenza vaccine, permitting us to explore relationship between vaccine response and host single nucleotide polymorphisms (SNPs) in 23 candidate genes with adjustment of multiple testing. For host SNPs in TLR7-1817G/T (rs5741880), genotype GT was associated with lower odds (OR: 0.22, 95% CI: 0.09, 0.53) of have post-vaccination hemagglutination-inhibiting (HAI) titers ≥40, compared with genotype GG and TT combined under the over-dominant model. For host SNPs in TLR8-129G/C (rs3764879), genotype GT was associated with lower odds (OR: 0.47; 95% CI: 0.28, 0.80) of have post vaccination HAI titers ≥40 compared with genotype GG and AA combined under the over-dominant model. Our results could contribute to the development of better vaccines that may offer improved protection to all recipients.

7.
Viruses ; 14(10)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298653

RESUMO

Influenza vaccination is an important intervention to prevent influenza virus infection. Our previous analysis suggested that indirect protection is limited in an influenza B epidemic in Hong Kong. We further analyzed six influenza A epidemics to determine such potential. We applied a statistical model to estimate household transmission dynamics in the 3 influenza A(H3N2) and 3 pandemic influenza A(H1N1) epidemics. Then, we estimated the reduction in infection risk among unvaccinated household members when all children in households are vaccinated, with different assumptions on vaccine efficacy (VE). In the optimal scenario that VE was 70%, the reduction to the total probability of infection was only marginal, with relative probabilities ranged from 0.91-0.94 when all children in households were vaccinated because community was by far the main source of infection during the six epidemics in our study. The proportion of cases attributed to household transmission was 10% (95% CrI: 7%, 13%). Individual influenza vaccination is important even when other household members are vaccinated, given the degree of indirect protection is small.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Vacinação
8.
Emerg Infect Dis ; 28(5): 977-985, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447069

RESUMO

Zoonotic influenza infections continue to threaten human health. Ongoing surveillance and risk assessment of animal viruses are needed for pandemic preparedness, and population immunity is an important component of risk assessment. We determined age-stratified hemagglutinin inhibition seroprevalence against 5 swine influenza viruses circulating in Hong Kong and Guangzhou in China. Using hemagglutinin inhibition seroprevalence and titers, we modeled the effect of population immunity on the basic reproduction number (R0) if each virus were to become transmissible among humans. Among 353 individual serum samples, we reported low seroprevalence for triple-reassortant H1N2 and Eurasian avian-like H1N1 influenza viruses, which would reduce R0 by only 18%-20%. The smallest R0 needed to cause a pandemic was 1.22-1.24, meaning existing population immunity would be insufficient to block the spread of these H1N1 or H1N2 variants. For human-origin H3N2, existing population immunity could suppress R0 by 47%, thus reducing pandemic risk.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H1N2 , Vírus da Influenza A Subtipo H3N2 , Vírus Reordenados/fisiologia , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/epidemiologia , Zoonoses
9.
J Infect Dis ; 226(6): 1022-1026, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35380689

RESUMO

We explored the potential for a biphasic pattern in waning of antibody titers after influenza vaccination. We collected blood samples in a randomized controlled trial of influenza vaccination in children and tested them with hemagglutination inhibition assays for influenza A(H3N2) and influenza B/Victoria lineage. Using piecewise log-linear mixed-effects models, we found evidence for a faster initial waning of antibody titers for the first 1-2 years after vaccination and then slower longer-term declines. Children with higher postvaccination titers had faster antibody decay.


Assuntos
Vacinas contra Influenza , Influenza Humana , Anticorpos Antivirais , Criança , Hemaglutinação , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana/prevenção & controle , Vacinação , Vacinas de Produtos Inativados
10.
Nat Commun ; 13(1): 1557, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322048

RESUMO

For >70 years, a 4-fold or greater rise in antibody titer has been used to confirm influenza virus infections in paired sera, despite recognition that this heuristic can lack sensitivity. Here we analyze with a novel Bayesian model a large cohort of 2353 individuals followed for up to 5 years in Hong Kong to characterize influenza antibody dynamics and develop an algorithm to improve the identification of influenza virus infections. After infection, we estimate that hemagglutination-inhibiting (HAI) titers were boosted by 16-fold on average and subsequently decrease by 14% per year. In six epidemics, the infection risks for adults were 3%-19% while the infection risks for children were 1.6-4.4 times higher than that of younger adults. Every two-fold increase in pre-epidemic HAI titer was associated with 19%-58% protection against infection. Our inferential framework clarifies the contributions of age and pre-epidemic HAI titers to characterize individual infection risk.


Assuntos
Doenças Transmissíveis , Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Adulto , Anticorpos Antivirais , Teorema de Bayes , Criança , Suscetibilidade a Doenças , Testes de Inibição da Hemaglutinação , Humanos
11.
Viruses ; 14(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216014

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have spilled over from humans to companion and wild animals since the inception of the global COVID-19 pandemic. However, whole genome sequencing data of the viral genomes that infect non-human animal species have been scant. Here, we detected and sequenced a SARS-CoV-2 delta variant (AY.3) in fecal samples from an 11-year-old domestic house cat previously exposed to an owner who tested positive for SARS-CoV-2. Molecular testing of two fecal samples collected 7 days apart yielded relatively high levels of viral RNA. Sequencing of the feline-derived viral genomes showed the two to be identical, and differing by between 4 and 14 single nucleotide polymorphisms in pairwise comparisons to human-derived lineage AY.3 sequences collected in the same geographic area and time period. However, several mutations unique to the feline samples reveal their divergence from this cohort on phylogenetic analysis. These results demonstrate continued spillover infections of emerging SARS-CoV-2 variants that threaten human and animal health, as well as highlight the importance of collecting fecal samples when testing for SARS-CoV-2 in animals. To the authors' knowledge, this is the first published case of a SARS-CoV-2 delta variant in a domestic cat in the United States.


Assuntos
COVID-19/veterinária , Fezes/virologia , Animais de Estimação/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/transmissão , COVID-19/virologia , Gatos , Feminino , Genoma Viral/genética , Humanos , Filogenia , RNA Viral/genética , SARS-CoV-2/classificação , Estados Unidos , Sequenciamento Completo do Genoma
12.
bioRxiv ; 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132417

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have spilled over from humans to companion and wild animals since the inception of the global COVID-19 pandemic. However, whole genome sequencing data of the viral genomes that infect non-human animal species has been scant. Here, we detected and sequenced a SARS-CoV-2 delta variant (AY.3) in fecal samples from an 11-year-old domestic house cat previously exposed to an owner who tested positive for SARS-CoV-2. Molecular testing of two fecal samples collected 7 days apart yielded relatively high levels of viral RNA. Sequencing of the feline-derived viral genomes showed the two to be identical, and differing by between 4 and 14 single nucleotide polymorphisms in pairwise comparisons to human-derived lineage AY.3 sequences collected in the same geographic area and time period. However, several mutations unique to the feline samples reveal their divergence from this cohort on phylogenetic analysis. These results demonstrate continued spillover infections of emerging SARS-CoV-2 variants that threaten human and animal health, as well as highlight the importance of collecting fecal samples when testing for SARS-CoV-2 in animals. To the authors' knowledge, this is the first published case of a SARS-CoV-2 delta variant in a domestic cat in the United States.

13.
Emerg Infect Dis ; 27(12): 3052-3062, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34808078

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) infects humans and dromedary camels and is responsible for an ongoing outbreak of severe respiratory illness in humans in the Middle East. Although some mutations found in camel-derived MERS-CoV strains have been characterized, most natural variation found across MERS-CoV isolates remains unstudied. We report on the environmental stability, replication kinetics, and pathogenicity of several diverse isolates of MERS-CoV, as well as isolates of severe acute respiratory syndrome coronavirus 2, to serve as a basis of comparison with other stability studies. Although most MERS-CoV isolates had similar stability and pathogenicity in our experiments, the camel-derived isolate C/KSA/13 had reduced surface stability, and another camel isolate, C/BF/15, had reduced pathogenicity in a small animal model. These results suggest that although betacoronaviruses might have similar environmental stability profiles, individual variation can influence this phenotype, underscoring the need for continual global viral surveillance.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Aerossóis , Animais , Camelus , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2 , Virulência , Zoonoses
14.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34099577

RESUMO

Coronaviruses are pathogens of pandemic potential. Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. More than 70% of MERS-CoV-infected dromedaries are found in East, North, and West Africa, but zoonotic MERS disease is only reported from the Arabian Peninsula. We compared viral replication competence of clade A and B viruses from the Arabian Peninsula with genetically diverse clade C viruses found in East (Egypt, Kenya, and Ethiopia), North (Morocco), and West (Nigeria and Burkina Faso) Africa. Viruses from Africa had lower replication competence in ex vivo cultures of the human lung and in lungs of experimentally infected human-DPP4 (hDPP4) knockin mice. We used lentivirus pseudotypes expressing MERS-CoV spike from Saudi Arabian clade A prototype strain (EMC) or African clade C1.1 viruses and demonstrated that clade C1.1 spike was associated with reduced virus entry into the respiratory epithelial cell line Calu-3. Isogenic EMC viruses with spike protein from EMC or clade C1.1 generated by reverse genetics showed that the clade C1.1 spike was associated with reduced virus replication competence in Calu-3 cells in vitro, in ex vivo human bronchus, and in lungs of hDPP4 knockin mice in vivo. These findings may explain why zoonotic MERS disease has not been reported from Africa so far, despite exposure to and infection with MERS-CoV.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Zoonoses/virologia , África , Animais , Arábia , Linhagem Celular , Dipeptidil Peptidase 4/metabolismo , Técnicas de Introdução de Genes , Humanos , Cinética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Fenótipo , Filogenia , Glicoproteína da Espícula de Coronavírus/metabolismo , Replicação Viral/fisiologia
15.
NPJ Vaccines ; 6(1): 25, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594050

RESUMO

The vaccine efficacy of standard-dose seasonal inactivated influenza vaccines (S-IIV) can be improved by the use of vaccines with higher antigen content or adjuvants. We conducted a randomized controlled trial in older adults to compare cellular and antibody responses of S-IIV versus enhanced vaccines (eIIV): MF59-adjuvanted (A-eIIV), high-dose (H-eIIV), and recombinant-hemagglutinin (HA) (R-eIIV). All vaccines induced comparable H3-HA-specific IgG and elevated antibody-dependent cellular cytotoxicity (ADCC) activity at day 30 post vaccination. H3-HA-specific ADCC responses were greatest following H-eIIV. Only A-eIIV increased H3-HA-IgG avidity, HA-stalk IgG and ADCC activity. eIIVs also increased polyfunctional CD4+ and CD8+ T cell responses, while cellular immune responses were skewed toward single-cytokine-producing T cells among S-IIV subjects. Our study provides further immunological evidence for the preferential use of eIIVs in older adults as each vaccine platform had an advantage over the standard-dose vaccine in terms of NK cell activation, HA-stalk antibodies, and T cell responses.

16.
J Infect Dis ; 224(5): 821-830, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395484

RESUMO

BACKGROUND: Human spillovers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to dogs and the emergence of a highly contagious avian-origin H3N2 canine influenza virus have raised concerns on the role of dogs in the spread of SARS-CoV-2 and their susceptibility to existing human and avian influenza viruses, which might result in further reassortment. METHODS: We systematically studied the replication kinetics of SARS-CoV-2, SARS-CoV, influenza A viruses of H1, H3, H5, H7, and H9 subtypes, and influenza B viruses of Yamagata-like and Victoria-like lineages in ex vivo canine nasal cavity, soft palate, trachea, and lung tissue explant cultures and examined ACE2 and sialic acid (SA) receptor distribution in these tissues. RESULTS: There was limited productive replication of SARS-CoV-2 in canine nasal cavity and SARS-CoV in canine nasal cavity, soft palate, and lung, with unexpectedly high ACE2 levels in canine nasal cavity and soft palate. Canine tissues were susceptible to a wide range of human and avian influenza viruses, which matched with the abundance of both human and avian SA receptors. CONCLUSIONS: Existence of suitable receptors and tropism for the same tissue foster virus adaptation and reassortment. Continuous surveillance in dog populations should be conducted given the many chances for spillover during outbreaks.


Assuntos
COVID-19/virologia , Vírus da Influenza A/fisiologia , Pulmão/virologia , Cavidade Nasal/virologia , SARS-CoV-2/fisiologia , Traqueia/virologia , Tropismo Viral/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , Cães , Humanos , Influenza Humana/metabolismo , Influenza Humana/virologia , Pulmão/metabolismo , Cavidade Nasal/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Traqueia/metabolismo
17.
Nat Commun ; 12(1): 63, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397909

RESUMO

The SARS-CoV-2 pandemic poses the greatest global public health challenge in a century. Neutralizing antibody is a correlate of protection and data on kinetics of virus neutralizing antibody responses are needed. We tested 293 sera from an observational cohort of 195 reverse transcription polymerase chain reaction (RT-PCR) confirmed SARS-CoV-2 infections collected from 0 to 209 days after onset of symptoms. Of 115 sera collected ≥61 days after onset of illness tested using plaque reduction neutralization (PRNT) assays, 99.1% remained seropositive for both 90% (PRNT90) and 50% (PRNT50) neutralization endpoints. We estimate that it takes at least 372, 416 and 133 days for PRNT50 titres to drop to the detection limit of a titre of 1:10 for severe, mild and asymptomatic patients, respectively. At day 90 after onset of symptoms (or initial RT-PCR detection in asymptomatic infections), it took 69, 87 and 31 days for PRNT50 antibody titres to decrease by half (T1/2) in severe, mild and asymptomatic infections, respectively. Patients with severe disease had higher peak PRNT90 and PRNT50 antibody titres than patients with mild or asymptomatic infections. Age did not appear to compromise antibody responses, even after accounting for severity. We conclude that SARS-CoV-2 infection elicits robust neutralizing antibody titres in most individuals.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19 , Teste para COVID-19 , Chlorocebus aethiops , Estudos de Coortes , Feminino , Hong Kong/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Pandemias , Células Vero , Adulto Jovem
18.
J Clin Microbiol ; 59(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33139421

RESUMO

Surrogate neutralization assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be done without biosafety level 3 containment and in multiple species are desirable. We evaluate a recently developed surrogate virus neutralization test (sVNT) in comparison to 90% plaque reduction neutralization tests (PRNT90) in human, canine, cat, and hamster sera. With PRNT90 as the reference, sVNT had sensitivity of 98.9% and specificity of 98.8%. Using a panel of immune sera corresponding to other coronaviruses, we confirm the lack of cross-reactivity to other coronaviruses in SARS-CoV-2 sVNT and PRNT90, except for cross-reactivity to SARS-CoV-1 in sVNT.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Testes de Neutralização/métodos , SARS-CoV-2/isolamento & purificação , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/patologia , Gatos , Cricetinae , Reações Cruzadas , Cães , Feminino , Humanos , Soros Imunes/imunologia , Masculino , Testes de Neutralização/normas , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
19.
Lancet Infect Dis ; 21(3): 385-395, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33035474

RESUMO

BACKGROUND: Middle East respiratory syndrome (MERS) remains of global public health concern. Dromedary camels are the source of zoonotic infection. Over 70% of MERS coronavirus (MERS-CoV)-infected dromedaries are found in Africa but no zoonotic disease has been reported in Africa. We aimed to understand whether individuals with exposure to dromedaries in Africa had been infected by MERS-CoV. METHODS: Workers slaughtering dromedaries in an abattoir in Kano, Nigeria, were compared with abattoir workers without direct dromedary contact, non-abattoir workers from Kano, and controls from Guangzhou, China. Exposure to dromedaries was ascertained using a questionnaire. Serum and peripheral blood mononuclear cells (PBMCs) were tested for MERS-CoV specific neutralising antibody and T-cell responses. FINDINGS: None of the participants from Nigeria or Guangdong were MERS-CoV seropositive. 18 (30%) of 61 abattoir workers with exposure to dromedaries, but none of 20 abattoir workers without exposure (p=0·0042), ten non-abattoir workers or 24 controls from Guangzhou (p=0·0002) had evidence of MERS-CoV-specific CD4+ or CD8+ T cells in PBMC. T-cell responses to other endemic human coronaviruses (229E, OC43, HKU-1, and NL-63) were observed in all groups with no association with dromedary exposure. Drinking both unpasteurised camel milk and camel urine was significantly and negatively associated with T-cell positivity (odds ratio 0·07, 95% CI 0·01-0·54). INTERPRETATION: Zoonotic infection of dromedary-exposed individuals is taking place in Nigeria and suggests that the extent of MERS-CoV infections in Africa is underestimated. MERS-CoV could therefore adapt to human transmission in Africa rather than the Arabian Peninsula, where attention is currently focused. FUNDING: The National Science and Technology Major Project, National Institutes of Health.


Assuntos
Camelus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Exposição Ocupacional/estatística & dados numéricos , Linfócitos T/imunologia , Zoonoses/epidemiologia , Zoonoses/imunologia , Adolescente , Adulto , Idoso , Animais , Anticorpos Neutralizantes , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Camelus/virologia , Estudos de Coortes , Infecções por Coronavirus/transmissão , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Nigéria/epidemiologia , Adulto Jovem , Zoonoses/transmissão , Zoonoses/virologia
20.
Vaccines (Basel) ; 8(4)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182279

RESUMO

The stalk domain of the hemagglutinin has been identified as a target for induction of protective antibody responses due to its high degree of conservation among numerous influenza subtypes and strains. However, current assays to measure stalk-based immunity are not standardized. Hence, harmonization of assay readouts would help to compare experiments conducted in different laboratories and increase confidence in results. Here, serum samples from healthy individuals (n = 110) were screened using a chimeric cH6/1 hemagglutinin enzyme-linked immunosorbent assay (ELISA) that measures stalk-reactive antibodies. We identified samples with moderate to high IgG anti-stalk antibody levels. Likewise, screening of the samples using the mini-hemagglutinin (HA) headless construct #4900 and analysis of the correlation between the two assays confirmed the presence and specificity of anti-stalk antibodies. Additionally, samples were characterized by a cH6/1N5 virus-based neutralization assay, an antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and competition ELISAs, using the stalk-reactive monoclonal antibodies KB2 (mouse) and CR9114 (human). A "pooled serum" (PS) consisting of a mixture of selected serum samples was generated. The PS exhibited high levels of stalk-reactive antibodies, had a cH6/1N5-based neutralization titer of 320, and contained high levels of stalk-specific antibodies with ADCC activity. The PS, along with blinded samples of varying anti-stalk antibody titers, was distributed to multiple collaborators worldwide in a pilot collaborative study. The samples were subjected to different assays available in the different laboratories, to measure either binding or functional properties of the stalk-reactive antibodies contained in the serum. Results from binding and neutralization assays were analyzed to determine whether use of the PS as a standard could lead to better agreement between laboratories. The work presented here points the way towards the development of a serum standard for antibodies to the HA stalk domain of phylogenetic group 1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA